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o ABSTRACT

.: /

, /\ A new geometric adaptive control (GAC) system has been developed
¥ for Improving the accuracy and stabllity In machinlng cylindrical
ti workplece. The system takes Into consideration error generatlon process.

‘:' machlne tool dynamlcs, and metrology. The new stochastlc model
. constructed In thls thesls provides not only Insight Into the nature of
machining processes, but also a means for the systematlc design of
geometrlc adaptlve controllers.

. _ The adaptive control algorithms for the GAC system are derilved by

1;? using the theory of self-tuning control (STC). The algorithms are slmple,
:.:'_:_: robust, and sultable for mlcroprocessor lmplementation. Whitehouse's
) multiprobe measurement 1s modifled for use In the control system for the
first time. Interestlng propertles of thls measurement in control are
analyzed and predlcted.

', The results of slmulation show that the GAC system ~an Improve
L both the accuracy and the stabllity considerably. Through the theoretical
“-:.: analysis It was possible to resolve the control problems Imposed by
-:'_ﬁ multiprobe measurement, and to achleve near optimum control
:‘; performance. A comparison with another GAC system whlch uses FCC

.’_4 technlque 1s made to show that the proposed GAC system does have
;f; hetter performance than other exlsting GAC systems In preclsion

: mach!ining.
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CHAPTER 1

INTRODUCTION

The progress of machining accuracy has been accelerated by the
requirement of high precision parts in space exploration, electronics
miniaturization, and laser applications [70,93]. Not only do these
technologies need precision hardware, which are usually produced by
machining, to ;ccomplish their extraordinary performance. In the
traditional industries the pursuit for better accuracy never stops.
Accurately machined parts can assure assembly efficiency in mass
production systems, reduce noise and vibration for improving the

quality of the product, and simplify product design [18].

It can be seen that cylindrical machined parts exist in most, if
not all, of the products. This is particularly true for those having
rotary motions. Dimensional accuracy, roundness, and finish are the
three most important aspects of the accuracy of cylindrical parts.
Dimensional accuracy refers to the bias error of the effective
diameter of the machined part from the specified diameter in the part
drawing. It determines the clearance or tightness in the assembly of
a hole and a shaft. Dimensional accuracy is usually specified in the

design stage as tolerance to allow for the machining errors.

It has been shown by Moore [70] that roundness becomes

proportionally more critical as tolerances become tighter.
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Roundness, or more precisely out-of-roundness, refers to the

r

f 3

deviation of the cross-section of a cylindrical workpiece from an

.
-

ideal circle. Depending on the types of applications, out-of-

LR AN

e

roundness may result in various kinds of problems, such as leakage,
stress concentration, noise and vibration, and so on ([34]. Most of
b the time, out-of-roundness is regarded as the form error of low

frequency undulations on the part surface.

Unlike dimensional accuracy and roundness, finish is a

:? microscopic description of the part surface. The machined part
;j usually has many random and high frequency undulations on the surface
- in addition to out-of-roundness. The qualitative interpretation of
% these small undulations through human sensors, vision and touch, is
?& - finish. 1Its effects on the performance of the product are also of
| microscopic nature, such as friction, wear, erosion, and
& reflectability.
<
b
(L. According to the above descriptions, it is understandable that
- the development 1in cylindrical machining has always been the most
as; rewarding in the history of machine tools. Lathes and drilling
kﬁ machines are used for machining basic cylindrical surfaces. Other
’}. machine tools such as boring, reaming, grinding, and hcning are
Eé devised to trim excessive dimensions, to true round shapes, or to
. polish surfaces. However, the higher the precision the process can
:, achieve, the higher the unpredictability it has, and the higher the
é; skill it needs [53]. Some automatic control systems for geometrical
;E accuracy are needed to overcome this barrier. For setting up
5 effective control systems, it would be helpful to identify the
"
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sources of and the processes generating geometrical inaccuracies or

errors on the machined part in advance.

1.1 Sources of Geometrical Errors

i.

ii.

iii.

iv.

The sources of geometrical errors can be categorized as follows:

Structural inaccuracies and deformation - All members of the
machine tool are produced by using various production
processes. Consequently they are subject to manufacturing
errors. And because of the finite rigidity of the members,
structural deformation is induced whenever there are forces of
cutting, clamping, gravity, or heat expansion. These errors are

copied to the machined surfaces through tne machining processes.

Vibrations - Vibration is the most annoying problem for the
machine tool builders and operators. It can be from anywhere,
unbalanced rotating parts, loose objects, or the floor of
machine base. The most detrimental vibration 1is from the
cutting process itself, called chatter, Vibration not only
reduces the accuracies of the machined part but also shortens

the lives of the tool and the machine,

Machining processes - Besides the process related chatter, the
tool may leave unwanted wmarks on the machined surfaces as it
moves relative to the workpiece. Also the wear of the tool

affects finish and dimensional accuracy.

Microstructural changes - This 1involves the rupture or the

plastic deformation of the metallic grains of workplece caused
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by the cutting forces and the effect of friction on the tool-

workpiece interface.
Roughly speaking, the first two categories contribute to dimensional
error and out-of-roundness. And the last two categories have major
effects on surfa;e finish. It is not wise to consider all the error
sources 1in developing an automatic control system for geometrical
accuracy. Some error sources are of minor importance, and can be
neglected. Some of them w®ay never be good for automatic
compensation. Therefore, it is a good practice to 1learn about the
available techniques of error reduction. Then we can determine the

error sources which should be considered in the control system.
1.2 Methods for Error Reduction

According to Blaedel [15], the methods for error reduction can
be divided into:
(a) error avoidance
*eliminating the error sources
*altering the processes of error generation

(b) error cowpensation

*precalibrated

*active
The methods of error avoidance prevail in most of the machine tool
builders. They typically need painstaking trials and tests in order
to identify the true error sources or error generation processes,
Then, one can reduce errors by redesigning, modifying, or carefully
manufacturing the critical members of the machine tool. For cutting

process related errors, sometimes, it is necessary to limit cutting
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conditions at the expense of productivity. In general, error

avoidance applies to those error sources which are steady or which

can be eradicated once for all.

Error compensation, on the other hand, is suitable for dynamic
errors. It attempts to wmodel the process of error generation from
the measured variables and then to predict the control inputs for
compensation. 1If the measurement is performed before or after the
cutting operations and then the errors are compensated for, it {is
called precalibrated error compensation. The principle of
precalibrated compensation is based on the existence of systematic
errors for modeling. The off-line measurement simplifies the system
of precalibrated compensation. However, certain nonrepeatable or
dynamic errors, chatter, for instance, will never be sensed and

corrected. Production time is also wasted in measurement for

calibration.

Active error compensation, with in~-process measurement ,
therefore, emerges as the most promising method for reducing
unpredictable errors [47,48,77,78]. One type of in-process
measurement is to measure the error motions of certain critical
members of the machine by attaching external masters to those
members. The other type is to measure the geometrical profile of the
machined surface directly. Although sometimes the latter type of
active compensation has accessibility problems in setting up the
instruments, its performance is more effective than that of the

former type because of the direct assessment of geometrical errors.
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The modeling of the process in active compensation, as shown in

Fig. 1.1, 1is quite complex. The unpredictable properties of the

system can be resolved by devising an adaptive model for the
compensator or controller according to in-process measurement,
compensation input, and appropriate control criteria. This has been

termed "geometrical adaptive control'" (GAC) [77,48,47].

1.3 GAC System and Related Problems

Basically, a GAC system should consist of in-process
measurement, on-line modeling or system identification, and real time
control. It is best for the applications in fine turning, honing,
and cylindrical grinding processes. Like its companions in
machining, adaptive control for optimization (ACO) and adaptive
control for constraint (ACC) [99], the development of GAC has been
relatively slow. Until now, only a handful of recent research papers
can be seen [50,84,55,68,69,87,102]. Most of these research work

still fail to fully resolve the following problems:

A. Problems in measurement - Apart from the problems of the
accessibility and reliability of sensors in harsh production
environments, a major concern in GAC is the separation
problem. That 1is, with the workpiece attached to the rotating
spindle, any in-process measurement of the surface geometry will
be contaminated by the spindle error motions, which are
difficult to be separated. The external masters used in [84,55)]

can measure and compensate for the spindle error motion only.
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N 3. Problems in system ~modeling - A thorough understanding of
."“ -'.
'f\
‘ machining processes has been elusive for the inconsistencies of
ﬁi?: experimental findings caused by different cutting conditions,
:i“: tool geometries, and work materials. Traditional models are
" deficient in handling the nonlinear, nonstationary, and
};:' stochastic nature of machining processes. On the other hand,
o
}pﬂ: the stochastic time series model used by Wu and his coworkers
it
R

({84,55,68,69] bears little physical meaning.

ia% C. Problems in adaptive control - In the absence of appropriate

; xﬁ models for machining processes, most of the adaptive control

ﬁ#f. techniques of GAC are quite crude and inadequate in assuring the

.;53 stability of the GAC system. A systematic approach for the
'é: . design of adaptive controller is still lacking.

1.4 The Objective of the Research

}1ﬂ The objective of this thesis is to propose a new GAC system

T,

X which can improve the precision of today”s cylindrical machining

[ A processes by at least an order of magnitude. To realize this
o~

W,

:, objective the above problems should be tackled more rigorously.

In Chapter 2, we investigate in detail the nature of the

K\ problems 1in measurement and modeling. The basic principles and
'\-_ ‘.
'J:; characteristics of metrology are studied to help develop a suitable
5
N technique of in-process measurement, For the purpose of modeling, we
WY
wﬁi review machine tool dynamics and try to find the most significant
Y
1&\ nature of machining processes for developing a generic but physically
)
A
A meaningful model of the GAC system.
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In Chapter 3, the general theory of self-tuning control is
introduced. It- is applicable to our GAC system for its ability to
control time varying and stochastic systems. Also, it satisfies the
requirement for a systematic design of adaptive controllers. In
general, self-tuning control consists of two parts, identification
and control. There are many algorithms for parameter identification
and controller design. To develop an effective gelf-tuning
controller, some practical i .sues have to be considered cautiously in

the construction of algorithms.

Mathematical models of the GAC system and the corresponding
adaptive control algorithms in discrete forms for digital computation
are presented in Chapter 4. The derivations are based on the
investigations in Chapters 2 and 3. The stability and convergence
properties of the control algorithms are analyzed. In addition,
special properties of multiprobe measurement, a method of in-process

measurement, in the GAC system are studied.

To evaluate the performance of the developed algorithms in
Chapter 4, simulation 1is carried out and the results are presented
and discussed in Chapter 5. The determination of some important
factors associated with the practical issues in self-tuning control
can be observed through the simulation results. The geometrical
accuracies and the increase 1in stability are the measures of the
performance of the GAC system. The simulation also accomplishes the

interesting studies of multiprobe measurement.

.........
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w%& In Chapter 6 comparisons with Forecasting Compensatory Control
(FCC), which has been used for roundness control [84,55], are given
to show that the GAC system we developed here does have significant
improvement in performance, accuracy and stability over other
existing techniques. We make the comparison in theoretical analysis,

digital simulation, and analog test.

Chapter 7 concludes the work we have done and suggests future

work which will support the success of this new development.
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CHAPTER 2

METROLOGY AND DYNAMICS

The development of GAC systems 1involves the consideration of

metrology, wmachine tool dynamics, and control theory. In this

chapter the discussion will be focussed on metrology and dynamics.

The control theory will be presented in next chapter.

2.1 Metrology

"Metrology is the science of measurement, which determines a
dimension through the use of some type of calibrated device that
permits the magnitude of the dimension to be determined, directly and
indirectly, in scalar units" [31]. The evolution of metrology in
manufacturing, since the early nineteenth century, has gone through
three stages: passive, active, and dynamic [80]. In the first stage,

passive metrology only served to reduce assembly work and to

guarantee interchangeability by checking the dimensional parameters
after manufacturing. In the next stage, active metrology was
introduced in order to achieve quality and interchangeability more
economically. The measurement is brought nearer to the manufacturing
process so that ilnaccuracies can be actively corrected by a certain
precalibrated compensation technique as mentioned in Chapter . In
the third stage, starting from 1960”s, dynamic metrology emerged as

an essential part of the integrated manufacturing system for a
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continuous and 1in-process measurement. The measurement can be used
not only to correct the 1naccuracies but also to optimize the
production system by the feedback or feedforward control action.
When correction of the geometrical inaccuracies is the  major
function, the integrated system 1is the GAC system as defined in
Chapter 1; otherwise, it can be an ACC or ACO system.
In parallel with the above evolution, the instrument for
metrology has also developed from James Watt”s micrometer to today’s
highly sophisticated and precise 1laser 1interferometers [44].
Meanwhile, the advent of electronics and digital computers in
metrology have made the measurement more c¢cnsistent and efficient.
In addition, metrology also extends from simple distance measurement
to surface profile assessment. More metrological parameters are
needed to quantify the functions or performances of a manufactured
part. Standards, such as ANSI, BS, and ISO, have various documents
on metrology [42]. They are used to justify the measurement of the
metrological parameters.
Metrology in manufacturing, in general, can be categorized into
three types: workpiece metrology, machine tool metrology, and in- {
process metrology. Although, for the GAC system, we are interested
in in-process metrology, measuring workpiece during machining

operation, the basic metrology principles and instrumentation of the

other two types are presented here to help in identifying and solving
problems in in-process metrology or measurement, Since we are
proposing a GAC system for cylindrical machining processes, most of
the discussion will be confined to cylindrical machined parts and the

associated machine tools.
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o 2.1.1 Workpiece Metrology
10N
.
R Workpiece metrology 1s the easiest to conduct, as the workpiece
:;i can be placed in an ideal metrology room and measured carefully. For
1Y
5 a cylindrical workpiece, we are most Interested in the measurement of
iy roundness. The methods of measuring roundness can be divided into
o production type and absolute type [70]. The methods of production
< type are:
T (i) diametral
n (1i) circumferential confining gage
o
f{f (iii) rotating on centers
= (iv) V-block
Y
N
{§j (v) three~point probe
;:1 These methods are relatively inexpensive, easy to operate, and rugged
e
= in use. The disadvantage, however, is that the relative measurement
s
ij of roundness can only be used for passing or rejecting the part in
:h} production line. The method of rotating on centers 1is even
‘f susceptible to errors from both the measuring setup and the part
vl
3;; itself, g
2 The major criticism of the diametral method and the V-block ’a
- o
SN method is their inability to detect, for example, the iso-diametrical -]
‘o= o
}}f out-of-roundness as shown in Fig. 2.l. From the configurations in :1
- Fig. 2.2, the out-of-roundness 1s determined by the magnification i
;)i: factor [90]. :E
::\ V.
.":n ::
- cos nB -
o F =] + ———— 2.1) N
= n ! sin(a/2) ( |
. ji
e -
~$“- -:
~_~.“‘~ i
(s :{J
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ﬂ: where a is the angle of V-block and n 1is the number of lobes 1{‘
K ™ b
distributed on the part surface uniformly. Fn equal to zero means _—
{ that the out-of-roundness will not be detected ror an n-lobed part. E:
L N
' S
\ It can be shown, from (2.1), that the diametral gage, equivalent to a A
180° V-block, is unable to detect the out-of-roundness of the part E:.
b o e
. with odd-numbered lobes. And 60 V-block is not good for 5, 7-lobed D

[
A

parts; 900 V-block not for 7, 9-lobed parts [70). More specifically,

e e T

s
.

¥

the V-block of Fig. 2.2(a) can not detect the out-of-roundness of the
£ *
n -lobed part, where

) *
b n = 21k/8 % ] (2.2)

*
and k is any positive integer making n integer. The same property

e
s 0w K A

can also be found in the multiprobe measurement of Chapter 4.

;1 The configuration of V-block method is also analogous to that of

: centerless grinding. As shown in Fig. 2.3, the edges of V-block

correspond to the grinding wheel and the control wheel, and the
L indicator above the V-block corresponds to the workplate of the
;i grinding machine., Therefore, (2.1) or (2.2) explains why the ground
1%
I

workpiece usually has odd-numbered lobes, and the out-of-roundness

diminishes as the workplate raises to a higher position.

The absolute method means that the roundness 1is assessed
directly from the surface profile measured in a roundness measuring

machine which has an extrinsic datum [34]. The measuring machine can
be either with overhead spindle or with rotating table as shown in

Fig. 2.4. The overhead spindle type, such as Moore Universal
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Measuring Machine, has a stylus tracing around the cylindrical part
on a fixed flat table. It is good for heavy and short parts. The
rotating table type, such as Talyrond, on the other hand, is good for
light parts. The stylus assembly positioned on a fixed stand can be
adjusted freely. Specifications on stylus tip radius, stylus static
force, cycles per revolution, and other operational information can

be found in British Standard [17] and ANSI Standard [l1].

The movement of the stylus is amplified and plotted on a
circular chart. The two most popular methods for evaluating the
out-of-roundness are: minimum zone center (MZC) and least squares

center (LSC) [l17]. The MZC method, as shown in Fig. 2.5, needs

several graphical trials done manually to determine the two fﬁ

concentric circles having the minimum radial difference. This radial

difference is defined as out-of-roundness. Recently, Murthy and

Abdin [72] devised the simplex search for finding the MZC in a more

systematic way.

The LSC method, as shown in Fig. 2.6, computes and finds the

center and the radius of the least squares circle by

2 in

b T —W— (2.3)

The out=-of-roundness is the summation of the largest outward
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‘;?: deviation of the polar profile from the LS circle and the largest
o inward deviation. Since the LS circle can be determined uniquely,
')'-:;.1

it this method 1is more suitable for computer controlled measuring
e machines.

)
;:;5 Special care should be taken in assessing out-of-roundness when
o ‘

: Y the cylindrical psrt 1is miscentered with respect to the axis of
Whe!
4&: rotation of the measuring machine. Fig. 2.7 shows that a perfect
N round part will have a limacon-shaped polar graph provided that
v

%t{ eccentricity exists. The reason for this kind of distortion 1is the
.“‘"-

$L§ suppressed radius used in plotting the polar graph [110]. The
,ff: suppressed radius is the preset distance between the stylus tip and
o

u}b the axis of rotation. It should be as close to the mean diameter of
;J; the part as possible so that the undulation of the part surface can
aa be distinguished by a high amplification factor.

‘ti: Therefore, the above descriptions on assessing out-of-roundness
‘}; are just approximately true if the eccentricity ratio is less than
:{1 15% [95,1]. whitehouse [110], Chetwynd {22], and McCool [63]

>
%:ﬂ proposed a more accurate approach for numerical assessment. This
o
Y approach uses the following regression equation:

e

)
.J':'\“ =
Fzéi ri R + a cos 61 + b sin 61 + e

A%

:.;_j; i = 1,2,00.,N (2.4)
e

oy
‘3:. By tt: least squares method, the estimated values for R, a, and b are
e

“_i the same as those in (2.3), and

o
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l‘“ represents the limacon graph of the LS circle of a mis-centered part.
L
ol 4
N The residual error e is the quantity used for assessing roundness. !
Ja I 4
[l
.}\ As defined in the British Standard, the LSC out-of-roundness is the 1
. maximum peak-to-peak error of e . Besides the improved accuracy, the
_ﬂf' limit on maximum allowable eccentricity is less restrictive for this
’;}? technique. It simplifies the centering operation during measurement.
‘:ﬂﬂ Also, (2.4) shows that the limacon consists of the constant and
,Fil the first harmonic of the Fourier series, and eiis the sum of all
fi higher harmonics. Hence, the removal of limacon from the polar graph
—t
uj: is equivalent to using a high-pass filter in signal processing. This
RN
ey technique is frequently used in machine tool metrology.
-
1R
. 2.1.2 Machine Tool Metrology
fr =
'
‘?:ﬁ Basically machine tool metrology 1is the same as workpiece
-J“l“
oy metrology with the absolute method, except that the part to be sensed
Y
;?j is a perfect round master attached to the spindle of the machine
i}i tool. Any measured movement can be attributed to the spindle error
f;; motion, which may generate uneven surface profile on the machined
N part [20,86]. Since the position of the sensor is where the tool
._\:.._
e resides normally, the spindle error motion in the radial direction
T;{; relative to the sensor 1is particularly important in producing the
y :3 geometrical inaccuracies of dimensional error, out-of-roundness, and
. h
Wil roughness.
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Unlike the absolute method of workpiece metrology, the setup for
machine tool metrology is determined by the machining processes. For
turning and most grinding operations, the setup for measurement
involves the replacement of the stationary cutting tool by a
noncontact sensor and the rotating workpiece by a spherical master,
as shown in Fig. 2.8(a). For the boring process with rotating tool,
Fig. 2.8(b) shows the setup with two perpendicular probes for
measuring the error motion at the angular position of the tool. The
setup in Fig. 2.9, an alternative for the setup in Fig. 2.8(b), is
more convenient for using single probe [49]. Other methods related
to the above two cases can be seen in the survey by Bryan and

Vanherck [20] and Murthy et al. [73].

Because of the nonrepetitive nature of the spindle error motion,
the measurement is normally made of readings for several revolutions
as shown in Fig. 2.10; it is defined as the total error motion polar
plot. The mean contour of the total error motion polar plot is
termed as the average error motion polar plot, and the difference
between the total error motion polar plot and the average error
motion polar plot is called the random error motion [101). Using the
LSC method, the eccentricity can be located in the average error

motion polar plot.

Since the spindle runs normally at the operating speed during
measurement, the induced once-per-revolution unbalanced motion may
mix with the misalignment of the master. One of the approaches for
removing the misalignmeat effect from the measurement is to take a

second measurement at a fairly low spindle speed to get a new average
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Figure 2.8 Techniques of Machine Tool Metrology
(a) Stationary Tool Type
(b) Rotary Tool Type
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.fcj Figure 2.9 Another Measurement Technique for Process of

Rotating Tool Type [49]
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A) TOTAL ERROR MOTION

Bi AVERAGE ERROR MOTION C) RANDOM ERROR MOTION

Figure 2.10 Typical Measurement of Spindle Radial
Error Motion [101]
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motion, then to find the eccentricity purely caused by misalignment.

The digital technique we mentioned is good for this type of signal

processing.
2.1.3 In-process Metrology

For very precise measurement, we can no longer assume perfect
spindle in workpiece metrology or perfect master in machine tool
metrology. This situation corresponds to in-process metrology which
involves the measurements of both the workpiece geometry and the
spindle error motion. The reversal method [32,1), as shown in Fig.
2.11, separates the spindle error motion e(6) and the surface profile

s(8) by

e(8) = (vl(e) - vz(e))/Z

s8(6) = ("1(9) + vz(e))/z

where vl(e) is the measurement takem at position 1 and v2(6) at

position 2. Whitehouse [111] devised the multi~step method as shown

in Fig. 2.12. In step i, the measurement is

Vi(e) .S(e +ai) +e(9), i -0,1,...,1‘1.

[ SPI I SR

Through appropriate linear combination

c(8) = Zaivi(e) = Zais(e +a,)
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Transducer
Component
* Spindle
VTransducer
IMeasurement (1) Measurement (2)
Figure 2.11 Reversal Method for In-Process Measurement
- Component
Spindle
Transducer
. ‘||||I|||l’ ‘||||I||||l’ "||||I||||’
Step O 1 2 o o o n

Figure 2.12 Multi-Step Method for In-Process Measurement
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A
Ly
\.‘:g': Za. = 0
x‘n“‘. l
‘.“. s(8) can be evaluated from the Fourier expansion of c(6). Although
o
£ the reversal method has more mechanical problems, the multi-step
L
}:H method suffers harmonic distortion. Both of these methods assume
ot that the spindle error motion is repetitive, which is not generally
>
L
%:w~ true in practice. Thus, Whitehouse [111] proposed the multiprobe
e
K:'j method for non-repetitive spindle errors. This is particularly good

for our GAC system., It will be discussed in Chapter 4.
{ﬁ}} 2.2 Machine Tool Dynamics

};Jf As discussed in Chapter 1, there are many error sources which
hjfj contribute to the inaccuracies of a machined part. Machine tool
W
Ay dynamics plays a very important role in transforming the error
1 sources into the geometrical inaccuracies. Also, in developing a GAC
N system for reducing the inaccuracies, the dynamic stability of the
4 -.‘:“

,%l— machining system should not be sacrificed, however. Thus, it is
J}?: imperative to understand machine tool dynamics before the development

P

N, of the GAC system.

Y )
nij In general, machine tool dynamics deals with the interaction o
a%

O
e between the cutting process and the machine tool structure as shown
po in Fig. 2.13. The interest in the investigation of machine tool

ff}' dynamics can be attributed to the most obscure and delicate problem -
Q:}: in metal cutting - chatter [94]. Chatter, usually, 1s an unwanted
-;55. vibration phenomenon during the machining operation., It spoils the
,}ff' finish and the dimensional accuracy of the workpiece, shortems the

i::‘ lives of the tool and the machine, and generates uncomfortable noise
C
" and vibration.

"
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.¢£$: There are two basic types of chatter: forced chatter and self- r
e
: ( excited chatter. Forced chatter typically results from periodic
}i;ﬂ disturbances, such as wunbalanced rotating members, intermittent
iif: cutting, gear backlash, and motions transmitted through the floor
= [16]. This type of chatter, though important in practice, relates to
rfﬁ fairly simple structural dynamics and offers no insight into the
.}fi dynamics of the cutting process. Self-excited chatter, on the other
' hand, occurs only when there are any machining operations. The J
5:;\ interaction of cutting dynamics and structural dynamics, under
'}f' certain conditions, may result in dynamic instability of the
;u' machining process. Normally, the resulting vibration is much more
i:j{ violent than that resulting from the former type. Thus, without any
ﬁ: confusion, the term "chatter" specifically refers to the self-excited
ke type in the following text.
P “:-::“-_
3;{}, 2.2.1 Chatter and Cutting Dynamics
i .F\-C'
LAEN
B3
2t The theory of chatter in metal cutting was first explored by
}
& Arnold ({4]. He proposed the falling characteristic of force-speed
<,

relationship for explairing the chatter phenomenon. Although this

concept is still quite controversial [40,98], his work shed some
light on the research in cutting dynamics. Basically, the cutting
process can be visualized from the three boundaries in Fig. 2.13(b)
[30]. On the boundary of the shear plane, the length and the angle
of the plane determine major cutting forces exerted on the tool faces
(64]. On the boundary of the tool-chip interface, the tool tip, tool
holder, and workpiece may deflect owing to the cutting forces on the

tool rake face. The geometry and the tip position of the tool are
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thus varied. Besides, the sliding motion of the chip over the tool
face is sometimes complicated by the built-up-edge and the wear on

the rake face, which change the tool geometry further.

Similar observations occur on the boundary of the tool-workpiece
interface. The flank wear resulting from the sliding motion changes
the effective clearance angle of the tool and affects the reacting
forces on the boundary. The tool and the workpiece, again, are
deflected by the reacting forces. Conceivably, the whole machining
process 1s quite nonlinear in nature; the associated factors are
interrelated. These explain the frequent inconsistencies in the

experimental findings among the researchers.

The mechanisms of chatter, generally, can be divided into the
velocity-dependent type, regenerative type, and mode-coupling type
[104]. Although they act simultaneously 1in practice, regenerative
chatter 1s recognized to dominate most of the unstable vibrations in
metal cutting [43,52,97). Furthermore, Tobias [98] elaborated the
theory of regenerative chatter and derived a stability chart which
matches very well with the test results as shown in Fig. 2.l4. The
lobing characteristic of the stability chart, which is common to most
of the machining processes, can hardly be explained by other chatter
theories. These facts justify the regenerative process or effect as

being the key phenomenon of the machining process.

Regenerative effect 1is the chip-thickness variation effect
caused by the surface undulation, y(t-t), which is formed in a

previous cut [98]. Hence, as seen in Fig. 2.13(b), the uncut chip
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thickness for a cylindrical machining process is given by

6(t) = y(t) - py(t-1)

where T is the time required for each revolution of the spindle and
¥, overlap factor, is introduced to account for the degree of overlap

in successive cuts., u is equal to one for plunge cutting, but zero

AR B B i SR Do

for thread cutting. In general,

0< p<i

The analytical prediction of u is very difficult; nevertheless, some

attempts have been made by Srinivasan and Nachtigal [91].

Machine tool dynamics can be conveniently represented by the
block diagram of Fig. 2.15, where regenerative effect is separated
from cutting dynamics for its particular significance. We
deliberately generalize the complexity of cutting dynamics by
expressing it as kcGC'. kc represents the static cutting stiffness,
which can be measured in steady state cutting. The dynamic cutting
stiffness Gc’ can be as complex as the theoretical derivations of

Albrecht [2] and Wu [114]. However, linear dynamics as expressed by

Gc (s) =1+ Ks \

is adequate to account for the physics of small vibration and to

accommodate the important effect of penetration rate [98,89].
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As for structural dynamics, km is the static structural
stiffness of the tool-workpiece-machine system. The dynamic

structural stiffness, Gm’, basically has the transfer function

g,.w
. - ini
Gm (s) X

i 8" + 2Ciwnis + wii

which is a multi-degree of freedom system with damping ratios ci’s
and natural frequencies wni’s. I1f there is any mode-coupling effect,
G ° can be expanded into a transfer matrix to correlate the vectors
m

of cutting forces and structural deflections.

A further simplification of the representation can be made by

letting

The stability borderline in the stability chart can be constructed by

solving the characteristic equation of the system in Fig. 2.15

k
1 +rc_ (1 - pe ST)Gm(S) =0, 8 = jw, j = \l_l i
m

Thus

m 1=y cos wrt
gR(w) - T (2.5)

cl+ u2 - 2ucos wrt

‘
9
3
P

m vy sin wrt
gI(w) i (2.6)

cl + u2 - 2p cos wt
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where

G (30) = g () + jg  (w)

1f Gm(jw) and ¢ are known in advance, the chatter frequency w, can be

found, for each given w_T, by solving

Sl(wc) y sin w T

SR(WC) 1 - u cos w T
Then, kc/km can be obtained from either (2.5) or (2.6).

Fig. 2.16 is the stability chart for the special case when

G (s) = = n 5 (2.7)

s” + chns + o
The chart shows that the stability of machining is determined by the
stiffness ratio, kc/km, and the ratio of the cutting speed,
2 or 2m/1, to the chatter frequency, Weoe In this case the asymptotic

borderline for absolute stability is [65]

1 2

(k_/k_) =2+ 2

¢ “o’min ~ ~ Z[gR(w)]min

The term (kc/km)min represents the minimum ratio of static cutting
stiffness to static structural stiffness. If the actual stiffness
ratio is smaller than this limit, the system will be wunconditionally

stable at any cutting speed. Thus, the term (kc/km)min can be used
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as a measure of the stability of machining. For the above simple
system, with typical damping ratio of §{ = 0,05, the maximum degree of

stability is k /k = 0.105.
c m

2.2.2 Methods for Chatter Reduction

There are many ways of increasing the stability of machining or
chatter control [16,98]. Increasing the damping in the vibration
direction is the most obvious one. Increasing the structural
stiffness by preloading the spindle can also enhance the stability.
In the shop floor, changing the cutting conditions is 1s frequently
used for avoiding chatter. Small depth of cut or width of cut, which
reduces cutting stiffness, is beneficial in stabilizing the machining
process. It can be seen from Figs. 2.14 and 2.16 that the dynamic
stability, sometime. can be achieved by wusing high cutting speed
which exceeds a certain critical value. Weck et al. [103] even used
the lobing characteristic of the stability chart to avoid chatter
vibration by shifting the spindle speed to the stable region.

Most of the above methods usually restrict the productivity or
need redesign of the machine. To overcome these deficiencies, active
chatter control was introduced in the late 1960°s. The system of
active chatter control normally has a feedback controller which is
designed according to the machire tool dynamics as shown in Fig.
2.15. The feedback system of Comstock et al. [29) measures the
relative displacement between the tool and the spindle, and controls
the infeed motion of the tool during plunge cutting. Nachtigal and
his coworkers [74,75,60) use force feedback to control the same

machining process.
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Later, adaptive active chatter control, using both force and
displacement feedbacks, was proposed to handle the problems of the
variation of machine tool dynamics during operation [76,67].
Basically, these methods use a deterministic model of machine tool
dynamics for stabilizing the wachining operation. They may also
attenuate disturbances through the increase of the controller gain
[66]. However, for geometric adaptive control, where accuracy is
more important than stability, the gain increase may not be adequate
for the unknown nature of random disturbances. Therefore, it 1is
essential to develop a stochastic model, based on the similar
reasoning of wmachine tool dynamics, to control the random
disturbances more effectively. Also, the control algorithms must be

more adaptive, versatile, and easy to implement for automated

machining systems.
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yi CHAPTER 3

N SELF-TUNING CONTROL THEORY

S

;; Although we are able to recognize and model the fundamental
’ properties of machine tool dynamics as shown in Chapter 2, the
1; characteristic parameters of the system can never be assessed exactly
3 through off-line testings and analyses. The value of the parameters
;i may change with the type of working material, part geometry, tool
:g geometry, and cutting conditions. Also, the changes may occur during
Ef the operation because of cutting force, wear, heat, and other
\:_”_ disturbances. Thus, in GAC, we need an adaptive control technique
Ej which can assess the system characteristics on line and maximize the
\ﬁ performance of the machining process.

- As shown in Fig. l.l, the adaptive controller basically consists
¢

‘3 of two important functioms:

'

;é *on-line identification of characteristic parameters

. *real time control for optimizing the performance index.

ﬁ; An ideal or optimal adaptive controller, also called dual controller,
:i is very difficult to achieve and implement due to the nonlinear
; nature of the interaction between the identification function and the
e
:;: control function [35,9] The interaction is nonlinear in the sense
;}: that the controller has to consider the future uncertainties of the
;F parameters in giving the control inputs. And the uncertainties or
;”i
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probability distributions of the parameters, called hyperstate, are

functions of the control inputs [112,5].

3.1 Self-tuning Control (STC)

Self-tuning control is a suboptimal adaptive control technique
which uses the certainty equivalence principle. The optimal
controller is designed by considering the estimated parameter values
as the true parameter values, that is, by ignoring any uncertainties
of the estimated parameters. This simplification makes the adaptive
control system linear and reduces the work of both analysis and

computation considerably.

The earliest STC is Kalman™s [51] self-optimizing control, which
tried to adapt the controller automatically to the changes of the
process characteristics. Peterka [79] extended this idea to the
stochastic system with constant parameters. It 1is Astrom and
Wittenmark [10] who first analyzed the properties of a self-tuning
regulator, and showed that optimal control can still be obtained
despite the approximation introduced by the certainty equivalence
principle. Since then, the interest 1In STC increased rapidly.
Further analysis of convergence and stability has provided much
deeper 1insight into the STC theory. Various algorithms for both
identification and control have been proposed to make STC more
efficient and versatile. And many successful applications of STC have

been reported justifying 1its substitution for PID controllers.

Furthermore, the sampled data based algorithms of STC are

particularly suitable for today”s low cost microprocessor control.
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Most of these developments can be reviewed by studying the following

L

representative work: Astrom [6,7); Astrom and Wittenmark [12]; Clarke
and Gawthrop [27,28]; Goodwin and Sin [39]); Harris and Billings [41];

Isermann [45,46]; Unbehauen {100); Wellstead [105].

3.2 Self-tuning Techniques

Assume that the system to be controlled can be described by an

ARMAX model [39]

A(z-l)yt = B(z_l)ut_k + C(z-l)et (3.1)

where k, an integer, is the time delay of the control system and

A(z_l) =1 + alz-1 + ... t a_z 8
n
- a
1 ) b
B(z ") =b. + b,z + ..ot b z
0 1 n
b
1 1 -
- - c
C(z ") =1+ clz + e + cncz

are associated with the dynamics of the system. Yeo Yy and e, denote
the system output, the control input, and the white noise disturbance

at the sampling time instant t, respectively.

The general form of a self-tuning controller can be expressed as

H(z_

(3.2)

-1 -1
)yt+k = F(z )yt + Gz u
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*
where yt is the desired output of the system. The polynomials F, G

and H are determined by the polynomials A, B and C in (3.1) and the
specified control criteria. Depending on the methods for determining ;
the parameters of the controller, self-tuning controllers can be
divided into two categories, explicit and implicit algorithms. The
explicit or indirect algorithm needs to estimate the polynomials A, B
and C before assessing the parameters of the controller. In the
implicit or direct algorithm the model (3.1) can be reparameterized
into a certain form so that the parameters of the controller can be

estimated directly.

3.2.]1 Parameter Estimation

Both the explicit and implicit algorithms need a recursive
parameter estimation scheme. The scheme can be one of the following
recursive estimation methods [46,33]:

recursive least squares (RLS)

recursive extended least squares (RELS)

recursive maximum likelihood (RML) :

recursive instrumental variables (R1V)

stochastic approximation (STA)

The RML or recursive prediction error method (RPEM) 1is the most

general and complex algorithm [59]. It has a unified form as shown ?
below: %
5 . R A
o 8(t) = 0(t-1) + L(t)e(t) (3.3a)
¢

L(t) = P(t)y(t)
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- —techie) (3.3b)
1 + v (t)P(e-1)v(t)
T g
P(t) = (I - L(t)y (£)]P(t-1) / a(t) (3.3¢) :
3
3
e(t) = y(r) - 9(t) .
]
AT
= y(t) - 0 (t-1)¢(t) (3.3d)
AT
8 (t) = (a,(t),...,a, (),8,(cr),...,B (t),
a b
€ (t),eee,® (t)) (3.4a)
1 n
C
T
¢ (£) = [-y(t-1),.0.,my(t-n_),u(t-k),... ,u(t-k-n +1),
Ek:-l),...,?(c-nc)] (3.4b)
T(t) = y(r) - 8T(e)w(e) (3.4¢)
wT(t) = [-9(t—1),...,-9(t-na),ﬁ(t-k), ...,ﬁ(t-k-nb+l),
e(t—l),...,E(t-nc)] (3.4d)
§(t)
Sz 8- ace)] = (v e-n2t 4 Ll
e(t)
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"\_ ‘\. y ( t )

L c -
e + ¢ (e=Dz 7)[a(t)
L. n,
SSCH B(t)
b "-:L B

s
K -J:‘.

LN

e

' y(t)

B ={u(t) (3.4e)
b T(t)

ey

b~ where matrix I is a unit matrix and a(t) is the forgetting factor for
;fﬁ discounting the old data. The a posteriori prediction error €(t) in
:$5: (3.4b and ¢) can smprove the convergence rate of the estimation
5;; algorithm., Most of the time, however, it is approximated by e(t) for
ff? simplicity. Further simplification can still be made. If y(t) 1is
p'\_'-.l

e approximated by ¢(t), the algorithm reduces to RELS. If n 1is equal
Lt c :

to zero, i.e., C(z- ) =1, the algorithm reduces to RLS. RIV and STA "

can be obtained by modifying or simplifying RLS; however, they are

L
A
kit

seldom used in STC.

:ﬁ 3.2.2 Control Criteria
'i}p In general, there are two types of control criteria, classical
B
k{: and optimal ({109]. From (3.1) and (3.2), the closed loop system is
D Yn
o of the form
TN
; .‘..
o .
B> L'y + = + *
L (AG BF)yt+k BHyt+k ccet+k (3.5)

SO With the classical type , the parameters of the controller, F and &,

are determined such that

NS A6 + BF = €T (3.6)
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where A, 8, and C are the estimated polynomials of A, B, and C. T is
the prespecified characteristic polynomial of the closed loop system.
For a regulator system, y* = 0, T is chosen to have the properties of
good noise rejection, a pole placement control [106,107]. For a
servo system, e, = 0, T and H are designed to assure good tracking
capability. It belongs to the pole-zero placement control [ll1). The

extended STC of Wellstead and Sanoff”s [108) chooses T and H for both

output tracking and noise rejection.

With the optimal type, the controller of (3.2) 1is taken to

minimize the cost function

1= E[¢2(c+k)|t]

*
$(t+k) = By, o+ Qu. - Ry (3.7)

1
where P, Q and R are polynomials 1in operator z . Consequently,

~

?, G and B can be determined from

The alternative form of (3.5) is thus

BR * EB + QC

- —— + —_—
Ye "PB+ Qo 't TPB + QA ¢t
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This is called generalized winimum variance control [23,25,26,38].
*

When P = ], Yo = 0, and Q = 0, the controller reduces to the famous

self-tuning regulator, a minimum variance controller [10]. Normally,

the cost function is specified with

P=R=1, Q=x2>0

for weighted minimum variance control [39].

The cost function of the optimal type can be extended to state
space variables for more sophisticated control [56]; however, it is
beyond our scope of interest. The generalized STC proposed by

Allidina et al. [3] is a unification for the classical type and the

optimal type.

3.3 Implementation Aspects

In the practical implementation of STC there are several factors
which should be considered. They can be classified 1into

identification, control, and general issues.
3.3.1 Identification Issues

In identification or parameter estimation, we consider the

following factors:

i. Orders of system, nos Dy and n.: They should be known a
priori. Normally, by knowing the upper bound, we can let

na = nb =n = n. For implicit self-tuning algorithms, the

information on time delay k is also needed. These integers

determine the total number of parameters to be estimated.
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Bias of estimation: Explicit algorithms require identification
schemes with less bias error in estimated parameters, such as
RML and RELS. These schemes, however, are complex
computationally and are susceptible to numerical instabilities.
Implicit algorithms, on the other hand, may use the simple

scheme as RLS and still have satisfactory control performance.

Computation accuracy and speed: In microprocessor based control
systems the accuracy of data words is much more limited than
that in general purpose computers, The accunulated
computational errors may cause numerical difficulties. To
overcome this problem, the square roots method [92] and the UD
method {14,96] of RLS can be used to convert the computation
from single precision to double precision without slowing down

the computational speed. If the computational speed is

critical, a fast algorithm is recommended [71,57].

Forgetting factors: A forgetting factor is very important in
STC. It not only determines the tracking speed of

identification for systems with time varying parameters, but

also may affect the convergence of the STC output. Normally, it
is in the range of .95 to 1.0. A low forgetting factor is good
for 1initial coarse tunings, fast varying parameters, and abrupt
changes in the desired output. However, it may destabilize the
control system if the value is too low, and may cause estimator

wind-up in servo control [5,12]. A time varying forgetting

factor [36] can be used to avoid those problems.

ainCadBiel
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v, Initial data: This is not a crucial issue in STC. The general

: ‘; rule 1is to make an initial guess of the parameters as close to
_é&f ti.e true values as possible. If the confidence of the guess is
e
ﬁ:&; low, the determinant of the covariance matrix should be large.
O
R

o vi. Identifiability: Astrom and Wittenmark {10] showed that in an
f£§ implicit self-tuning regulator it is possible to have the
f;g problem of identifiability in estimation. To avold any
et numerical difficulties, the simplest way is to give a certain
;:E parameter a constant value.

L3

b 3.3.2 Control Issues

i}ﬁ The selection of control criterion depends on the following
S

ﬁ£$ factors:

-

i. Performance specifications: This includes steady state error,

f3 noise rejection, convergence, stability, and robustness. These
'323 factors usually conflict with each other. Therefore, the
J selected criterion must be a compromise of these factors. At
'¢: this moment we are unable to evaluate or justify any control
?g? criteria for the 1lack of theoretical analysis. Some general
ié‘ guldelines can still be found [12].

ii? ii. Nonminimum phase problem: The nonminimum phase problem refers
};i particularly to some of the zeros of B in (3.1) falling outside
:jﬁ the unit circle Minimum variance control is very likely to be
Y;E: unstable for this kind of systems. Pole placement or weighted
:i; minimum variance control can overcome this problem {24].

=

n s

o
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iii. Constraints on control input: Another deficiency of minimum

. variance control is the large amplitude or energy of control
; inputs frequently required during control. The control hardware
or actuator can be easily overloaded or saturated. Like the

nonminimum phase problem, pole placement and weighted wminimum

e o -

variance control are possible solutions. Or, the constraints -

can be incorporated into the cost function of optimal control

) -

[62,61].

iv. Deterministic disturbances: In this text, deterministic
disturbances refer to the slowly varying disturbances and the

periodic disturbances with unknown frequencies and amplitudes.

This type of disturbances 1is important in practical control

PR R el wy = o -

systems; however, they are rarely discussed previously in STC.

LI EEUE 15

- The analysis and simulation of Goodwin and Sin [39]) reveal that "
i

the deterministic disturbances can be well compensated for by }i:

s '

STC. "

“y|

¢ " I
P S BB

3.3.3 General Issues

PR
AT

: i. Simplicity in implementation: STC should always be designed as

simple as possible for practical applications, The self-tuning

.Y

algorithms with weighted minimum variance criterion and RLS NS

A 17
ﬁ estimation wusually give more satisfactory results than other RS
-.. . S
- sophisticated algorithms. Also, implicit algorithms are simpler ;
- ' -:.\

:T and more robust than explicit ones in general ([12]. {j,
Z ii. Sampling rate: Sampling rate, in general, should be high enough Tx
o

. to cover the desired bandwidth of the closed loop system. Its \}H
bl ot A s

-. \_-\' i

-z 4
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) upper bound is limited by some considerations. It should not
. exceed the response speed of the actuator. It should be low
o enough so that the computer can accomplish all the digital
\: signal processing, and the variation of system delay is
insignificant compared to the sampling time interval. Further

:Q: considerations can be seen in [12].
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CHAPTER 4

THEORETICAL DEVELOPMENT

As mentioned in Chapter 2, the geometrical inaccuracies of the
machined part result from the relative error motion between the tool
tip and the part surface during machining operations. The error
motion 1in radial direction is particularly important in determining
the geometrical errors. There are numerous sources which contribute
to such kind of error motion. Three major types of error sources
considered in this text are: stochastic, deterministic, and

regenerative types.

The stochastic type 1s mainly induced by the play in the
imperfect spindle bearings. Fig. 2.10 is a typical polar plot of
spindle error motion measured from the idling spindle. The
randomness of the error motion suggests statistical models, such as
autoregressive model {83] and moving average model, for describing
this error motion mathematically. In real cutting, this error motion
is complicated further by the chip breakage, nonstationary built-up-
edge, hard grains in work material, floor noises, and change of the

bearing play due to cutting forces and thermal drifts.

The deterministic type can be further divided into linear errors

and periodic errors. Linear errors refer to those caused by steady

or slowly varying disturbances, such as the structural deflection

o R -"' o
SR R S
>t r “® et )
X Y W i&‘

AATGTEL LY LA




LR |

Al./l" vj l)'

'r“"l

K".

a,

U )
P A M

L

53

induced by the mean cutting forces, tool wear, and thermal expansion.
Periodic errors mostly come from the unbalanced rotating parts, such
as the spindle, grinding wheel, and gear train. The resulting error
motion is characterized by the periodic movement with frequencies
having integer multiples of the angular frequency of the spindle.
The fundamental or lowest frequency component of error motion results
in the eccentricity of the machined part, while the higher harmonics
produce lobe-shape errors on the part surface. Periodic errors may
also result from directional stiffness variation caused by the

chuckhead [81].

The regenerative type is the regenerative effect discussed in
Chapter 2. It relates to the interaction between the cutting torce
and the machine tool structure. The frequency of this type of error
motion 1s close to the natural frequency of the tool~workpiece
structure. It is an unstable phenomenon during machining operations.
Whether this unacceptable error motion will occur or not is

determined by the stiffness and the damping of the machining system.

Most of the above error sources are dynamic. They are difficult

to 1identify because the error sources are interrelated. Moreover,
these error sources differ with part designs and machining
conditions. Therefore, they can be best compensated for by a GAC
system. The GAC system proposed in the next section assumes that
direct measurement of the part geometry is used. Thus, the effect of
the above major error sources, except the thermal effect, on
geometrical accuracy can be detected and corrected by the controller.

The thermal effect is the dimensional expansion of the workpiece due

. e
L
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to the cutting heat. The GAC system tends to generate the
geometrical accuracies at the elevated workpiece temperature during
machining. Thus, a certain temperature measurement and calibration

is needed for the true dimensional accuracy. In this text, however,

this effect 1s assumed to be negligible for simplicity. T
4.1 Model of the GAC System o
The physical model of a cylindrical wmachining process, plunge ::j

=25

cutting in particular, is shown in Fig. 4.l. The tool cuts into the o
rotating workpiece, which is ciamped to the spindle. The forces ‘:ﬁ

generated during the cutting process excite the tool-workpiece
structure, which is basically 3 spring-mass—-damper system.
Meanwinile, the {induced structural »r regenerative type error motion
together with the other two tvpes of error motions determine the
actual tool path on the workpiece. The instantaneous part surface

and the depth-of-cut are thus formed.

Based on the above investigation, a control diagram of the GAC
system for plunge cutting is constructed as shown in Fig. 4.2. The
profile of the part surface at the tool tip is denoted by Yt’ which
is the reduction of radius measured from a base circle as shown in
Fig. 4.1. Due to the regenerative effect in plunge cutting, the

instantaneous depth-of-cut is Y -Y , where p is the time interval
t

t-p e

for the spindle to rotate in one revolution. The cutting process CP ;Tﬂ
.\ .

is related to the depth-of-cut and the cutting force. Through the ii%
structural dynamics, MT, a spring-mass-damper system, the error Eii
motion Xt is induced. Thus, surface profile Yt is the summation of é;;
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‘
KB = Y¢ o j
AC = Ys(t-p) 3
AD = Y, ]
AE = Y (t) i

Figure 4.1 Structural Dynamics and Regenerative Effect
of Plunge Cutting

Y, -Y
1 t-p 1-,7P -
\j
regenerative kt*'zt+ Ys(t)
process
F X
t vt "
e CP [ MT s
+
cutting structurel Y (t)
process dynamics s
t-k G y't - +
Adaptive
Controller
Figure 4.2 Control Diagram of the GAC System
S AN S S =2a1u2~':3.-iuﬂ-ix Wi AT . - el
RSO N et e T . ' e
E‘-L ﬁ“ \ M.‘.t—nfﬁ ‘AQ!M‘A‘»A-\ 'L:J... u\n :'.:N. l".::!‘—:‘l - -': o }c ;~‘»..:>L._; o C .\_ - - a _~ - ST



A Bt e M e gt i AR es SR e dn b - Taa i B RS ML/ Al o a g S c B gn e Vit e W I U Bl [ e R n by g (L AGER Sl Gai eulls salL oy Bsain el ae lhanll sah vaih Snlh tpl balh te i tng Sl and Snd Gl el ek Sl
. ~

)
-
y

56

structural error motion =X

, deterministic error motion zZ ,
t

stochastic error motion W , specified infeed of the tool Y (t), and
t S

the control action u K from the adaptive controller. The controller

y %
. L

e

VAR AR
e

G constantly measures the geometrical error yt, defined by Yt—Y (t),
s

k4

identifies the system model, and gives appropriate control action to

reduce yt.

-y I A .
e s, T 't‘

From Appendix 1, a linear model of the GAC system is derived and

expressed by a stochastic difference equation as follows:

-1
Az YWy -y +6)
t -p

-1 -1
= - + + 4.1
Bz )(u _, Yeop §.) + Clz )&, (4.1)
with
-1 -1 -n
Az ) =1+ a z + se0 + a z
1 n
-1 -1 -n
Blz )=b +bz + ...+Dbz (4.2)
0 1 n
-1 - -n
C(z ")=1+cz + e0o+cz
1 n
-1 ~1
where z is the backward shift operator, that is, 2 Yo = Yeap® The
inclusion of yt in (4.1) explains the regenerative effect in plunge
-p

cutting process. 6 , equal to Y (t) - Y (t-p), is the d pth-of-cut
t 5] S

1
corresponding to the specified infeed. The coefficients of A(z )

_1 .
and B(z ) are parameters associated with the characteristic

-1
properties of CP and MT. They are not known in general. C(z )it
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characterizes the stochastic error source in machining, where §

represents a white noise process with zero mean and variance oz. The
deterministic error source is embedded in (4.1) by the common zeros
of A, B, and C on the unit circle. In the following control
algorithms the order of the model, n, and time delay, k, are assumed
to be known. The delay, k, which accounts for the computation or
measurement delay, is far smaller than the regenerative delay p in
practice. The minimum value of k in digital control system is equal

to one.
4,2 STC Algorithm

By solving the Diophantine equation

ezl = az"hee™) + 275 Th (4.3)

where

F . f.+f -1 + + f R
(z ) = 0 lz eee n-lz

Equation (4.1) can be written as

- -1, -1
ez )y, = 8 + Oz EGTE (4.4)
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where
- -1 -1
G(z ) = B(z )E(z )
Thus,
F G
= - - +6) += - + 8 +
yt+k C(yt yt-p t) C(ut yt-p+k t+k)
-0 + E
(yt—p+k c+k) Et+k
= + 4.5
yt+k|t L (4.5)

where the operator z is omitted for simplifying the representation.

y is the conditional expectation of vy based on the
t+k|t t+k

observations y , y seeey, U , U yees, and the parameters of A, B,
t

t-1 t t-1

and C., Thus, for the minimum variance control criterion

2
Min E[yt*k;t]' E{.]: an exp. tation tunction (4.6)

it gives the following control law

X -y 4.7
Yookt ( )
or
C = F( - +6) +G(u -y + ) +
yt+kit Yo 77 t t-p+k t+k
cly -§ )=0 (4.8)
t-p+k t+k
with variance
SRR YSENEN e e T
AT e e "-_. - o ey i B ...‘.: . .
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D Var [y ) = (1 + ¢ + el 16 4.9
3 ar [y, e/t e ek_llcg (4.9)

» 4
el hlonniad

In self-tuning control, since all the parameters are unknown, (4.8)

-J.‘,A
Rl should be written as

o

AN

+ + LN ) +

"N 9t+k|t a19t+k-1|t-1 en9t+k-n|t-n
o

3 J 5) + & 5 )

el = - + + G(u - + +

s Ve T Vep T %t t  Tt-ptk | t+k

X,

e

g Cly -6

e t-p+k t+k

NN

. =0 (4.10)
o

j{i- where all the estimated quantities are represented by placing the
‘“{; A symbol, ~, on the top of the notations. Therefore, based on the
0l certainty equivalence principle, the control 1law corresponding to
‘i (4.7) is to find u such that

t

T

= F( § ) + 6( 5

pg = - + + G(u -~ +

y1:+k|t Ve yt-p t t yt-p+k t+k

R~

& + &( )

- Veaptk ~ ttk

e =0 (4.11)
LS (4.11) is derived from (4.10) by dropping the terms i=1,
. y pping ’9c+k—1|:—1’

Ky 2,+4+, n. Consequently, the model for estimating the parameters, ?,
..'-._ ~ A

.“i G, and C, is

.
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t(y -6) +¢€ (4.12)
t t

where € corresponds to Eit. If the system is optimally controlled,
t

the control output yt should satisfy (4.11).

The STC algorithm, represented by (4.11) and (4.12), belongs to
the implicit type. All the parameters in (4.12) can be updated by
the recursive least squares (RLS) scheme as shown in Appendix 2. The
recursive scheme can be further subjected to UD factorization for
improving the accuracy of computation [27,14]. A forgetting factor
is wused for tracking the specified input and the time-varying
parameters. Also, it is helpful to enhance the convergence rate of

the output at the outset of control.
4.3 Stability, Convergence, and Robustness

In optimal control, it can be shown that the control law (4.7)

gives a closed loop system satisfying
Cyt -CEEt
CBu = C(B - A)(y -6 ) - CF§ (4.13)
t t-

ptk  t+k t

The characteristics of the closed loop system, thus, depend on the
polynomials, B and C. That 1is, for a stable minimum variance

-1 -1
control, the zeros of B(z ) and €C(z ) must be within the unit

circle. The =zeros of A, however, plays no important role in the

.
.
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:;%: minimum variance control system. Therefore, even though the open
..‘\.
: ' loop system 1is unstable, this closed loop system may remain stable
e and optimally controlled. Conceivably, the self-tuning control
;}? system will inherit the properties of the optimal control system.
L
- This can be seen from the following stability and convergence
{:: analysis conducted by Goodwin and Sin [39,88].
i;} The existence of C in (4.12) is due to the specified infeed and
o the regenerative effect. Hence, it is a servo control problem. By
{?il introducing the following substitutions
‘w;‘n.:
N *
oo y (£) = ¥ (¢)
;L *
U y(t) =y, +y (t)
o *
b .0 t-k) = + t
{g u(t-k) U Y Y (t)
‘,ﬂ.ﬂ
!
A _
; A=A+ (B-Az?
‘x}\
o
e w(t) = £(t)
;\‘ the model, (4.1), can be converted into
LY
n:».:
"-'A:
NN A"y(t) = Bu(t-k) + Cw(t)
Ko '
e and the control law, (4.10), into
>

T *
$(t) O(t) = y (t+k)
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where ¢(t) and 6(t) are defined in [39]). The term w(t) is assumed to

be a white noise process, which satisfies the following conditions:

(1) Elw(t)|t-1] = 0

(11) E[wz(t)lt—ll - o

1 N 2
. (i41) lim Sup E-X w(t) (=
N+ t=]

Also, the following assumptions are made about the system:

1. k is known.
. 2. The upper bound for model order is known.

3. B(z_l) and C(z—l) have all zeros inside the unit circle.

- 1 1
2 4. c(z) 2 is strictly passive.
LN By using a modified RLS [88], the self-tuning controller can be shown
- to ensure with probability one that
s
LW,
b2 Lia Sup g I y(6)” <= (4014)
S
’}':ﬁ 1 N 2
G lim Sup ﬁ'z u(t)” ¢ (4.15)
ot N t=1
3 z.'\"\
o 1 x 2 2 <71
o lim Sup v £ E[(y(t) -y (£)7[t-1] =0° I ef (4.16)
o Nro t=1 i=0
ahy
‘\'..‘-¥
g \hx
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's§§z - Properties (4.14) and (4.15) yield the stability of the closed
}-:; loop system. The energy of both the system output and the control

v

‘5Qi input are bounded. Condition (4.16) stands for the output

%g} convergence. That is, the desired output y*(t) is asymptotically and

L optimally tracked. The passivity or positive real assumption on

E%:J '% - %} a stronger assumption than C having asymptotically stable zero

:ﬁﬁ (58], is important to the output <convergence.

-

From Appendix 1, A", B, and C may have common zeros on the unit
circle because of the deterministic disturbance. When the sampling

rate is sufficiently high B may have unstable zeros due to the excess

g number of poles [8]. As for the former case, the common zeros
f}f: characterize the uncontrollable part of the system. In cptimal P
t%f control, Goodwin and Sin [39] showed that if C is split into ]

bt S

A C=C +C

P s r

i

\:._;"'

#:s. where C has only asymptotically stable zeros and C {s the remainder
] r

v

it which can be as small as desired by the choice of C , the use of C

_.:.":-' s S

i?? instead of C in the Diophantine equation (4.3) will result in a

,iff suboptimal but stable control. By the same token, in self-tuning

oD control, if the zeros of 2 is kept within the unit circle by

_:i: projection method [39], the closed loop system will be nearly optimal

ﬁj: and stable.

]
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For the later case, u in (4.13) will be unbounded when B has
t

unstable zeros. If 1lowering the sampling rate is not permissible,

the weighted minimum variance control as shown in Appendix 2 can be

used to get a suboptimal but stable control.

The above analysis is based on the assumption that the model

order n is sufficiently large to cover all the natural frequencies of

the system.

In practice, a lower order model, however, is desirable

to simplify the algorithm and minimize the computation time. This

prompts the robustness issue of self-tuning control. the

Again,

weighted minimum variance control can be used for ensuring the

robustness of the low order coutroller [12]. Furthermore,

by

properly varying the weighting factor on~line, the control input can

be assured to fall within the constraints.

4.4 Multiprobe Measurement in GAC

To separate the spindle error motion from the measurement of the

surface profile, Whitehouse [111} devised the multiprobe method,

which uses three probes of different sensitivities without requiring

any masters. The probes are spaced around the workplece as shown in
Fig. 4.3. The centerlines of these probes intersect at a fixed point
O. Due to the spindle error motion, the axis of rotation 0" moves

around the fixed center randomly. The amplitude of this movement, e,

is assumed to be far less than the nominal radius of the part,

normally below 10 °R [110].

The geometric error yi(t) and the sensor measurement vi(t) at

each probe location are defined by
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Figure 4.3 Multiprobe Measurement
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yi(c) R - ri(c)

v (t) R~-d (), i=1, 2, 3. (4.17)
1 1

where r (t) and d (t) are illustrated in Fig. 4.3. Hence,
i i

v () =y () + (r (t) - d (&), i=1, 2, 3. (4.18)
1 1 1 1

It can be seen from Fig. 4.3 and (4.18) that the spindle error motion
involves two unknown quantities: amplitude, e, and angle, 4. At

least three probes are thus needed to remove the spindle error motion

from the probe méasurements; however, the geometrical error, yi(t),
can never be obtained for the number of wunknown quantities always
exceeds that of known quantities in (4.18). Therefore, only three
probes are sufficient for solving the separation problem. Additional

probes can be regarded as redundant.

With the three probes as shown in Fig. 4.3, it <can be proved

a,
[}

cvl(t) + avz(t) + bv3(t)

]

(4.19
cyl(t) + ayz(t) + bya(t) )

sin 8 / sin(a + 8)

(Y]
[}

lon
[}

sin a / sin(a + B) (4.20)

c = -1
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and

a+ B #a, 2n

r, 8>0

where d is the combined measurement of probes 1, 2, and 3 with the
t
scaling factors -1, a, and b, respeccively. Thus, (4.19) shows that

the spindle errur motion hes been separated from the measurement of

the surface geometry. During the plunge cutting process, R in (4.17)

should be replaced by Ri. Nevertheless, (4.19) and (4.20) hold in
this situation. Instead of applying Fourier analysis to recoanstruct

the surface geometry as Whitehouse did, the combined signal d is
t

used in the CAC system by the following manipulation.

According to the angular spacing of these probes and the

direction of rotatioa, the gecometrical errors yl(c), y)(t). and y}(t)

<

can be expressed by sampled variables, vy £’ yt . and v )
t- - S Tt

‘

respectively, Thus, (4.19) can be written as ™~

d =by -y + ay , t=1, 2, 3,e00

el B d il

t t t-f t~-g
f = pB/2nm
]
o g = pla+ B)/2n

3!- ..
.
-

e«
.
r

where p is the number of sampled points per revolution. Define

e s 4

o
A1 4
-'-‘-"

)

T
v
‘. . ll J

_1 - -
Pd(z ) = b -z + az ¢ (4.21)
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then

-1

d, =Pz Dy, (4.22)

Before proceeding to the design of a GAC system, the characteristics

- -1
of the polynomial, Pd(z ), should be analyzed.

4.4.1 Properties of Multiprobe Measurement

-1
The characteristic roots of Pd(z ) can be found by solving

or

zgsin o - zg sin(a + B) + sin B = 0 (4.23)

Let

- reJZWm/p’ j = ,/:Y

where m is a real number and

0<m<p

then (4.23) can written as

rg[cos m(a + B) + j sin m(a + B)]

- rg-f(cos ma + j sin ma)sin(a + B) + sin B =

-
"

! \ . AT
~ !.\.s-{’i.u sum‘m. Y ..x'ta.&\.ﬂ.& FOOLEA




.

Thus, j
4
4
g g-f _
r'cos m(a+ B) sina~r cos ma sin(a + B) + sin B = 0 (4.24)
g g-£f
r sinm(a+ B) sina-r sin ma sin(a + 8) = 0 (4.25)

If sin m(a + B) # 0, from (4.25)

f _sinma_sin (a + B)
sin a sin m(a + B)

(4.26)

and, from (4.25) * cos ma - (4.24) * sin ma,

g sin ma sin B8
sin @ sin mB

r (4.27)

If sin m(a+B) = 0, (4.25) gives

sin m(a+B) = sin ma cos mB + sin mB cos ma

= sin mB cos ma
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And, in this case, (4.24) gives
.8 g-f
()r°sin a - (H)r sin(a + B) + sin B =0 (4.28)
x %
Therefore, if there exists a characteristic pair (r ,m ), it must

*
either satisfy (4.26) and (4.27), or (4.28). The magnitude of r can

be any positive finite value. One special characteristic pair is

* *
r =1, m =1

for all admissible a and B. The solution means that if y is a
t
1
sinusoidal function with frequency —

y, = sin 27mt/p

then

Pd(z- )yt =0
In measurement, this means that the multiprobe method can not detect
the eccentricity error of the part, that is, the sinusoidal form
error with once-per-revolution frequency. This is the major
constraint of multiprobe method [111]). If this error is caused by
the unbalanced motion of a certain machine member, a balancing

operation  should be performed before machining. The higher

* *
harmonics, corresponding tor =1 andm = 2,3,4,..., may also be

undetectable to the measurement setup if a and B are not properly

chosen. To avoid this, the following analysis is needed.
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1ty
n e
3 -,
Let
Nty
-
\ ‘ Q= Zmu/p
R
i
:%: B = 2mm /p
e ]
Jﬂ‘ m, mn <
. @ s F
b
Lhie From (4.26) and (4.27), the suppression of higher harmonics occurs
Su *
%N - when m = m and
N
L0
k)
4 ) m*m /p=k (1 £tm /p) =1, 2, 3,.0s
' a a o >
% " /p =k, (1 *u_/p) 2, 3
ST mm = ]. -~ m = .l see
2 8P T s /P! = b 5 S
or
~:'.~-
b
-l k k
o * 6P
o m o=m *t1l, m, om~— =— (4.29)
3 0] 0 m m
; a B
I
b - From (4.29)
= mk =mk =k[lca(m ,m )!
i a B B a a B
:;f where "lcm" is lowest common multiplier. And
kp{lcm(m ,m )]
P[ ( G’ 8) kP
e m = =
M 0 m Mg gcd(mu,me)
4}_ where ''gcd’ is greatest common divisor and k can be any integers
= which make m_ an integer. Hence,

‘TN 0
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*___kp
- = ng(ma’mB) 1
or more precisely,
* k
m = modP““Ji'"-‘ 1, p] (4.30)
gcd(ma,ms)

From (4.30), if m is relatively prime to mB, or gcd(ma,ms) is
a

relatively prime to p, then

*
m =1, p~1 (or -1)

that 1s, no higher harmonics are suppressed. Sometimes, it 1is

neither easy nor necessary to achieve this property. A probe

LAt *
configuration with sufficiently large mn is acceptable. This is

because of the fact that higher harmonics usually have very low

amplitudes.

The other desired property of the multiprobe method, which will

be important to the following controller design, is to select angles

*
a and B such that the number of characteristic pairs having r > I is

minimal or none.

It seems that we are not able to derive any explicit function in

terms of a and B8 for r from (4.26), (4.27), and (4.28). However, the

following rules can help us approach the desired property.

Rule l: It can be shown that i1f a equals to B, the characteristic

pair will be

k'O, l, 2,00., ma-l

Py AN
e e AT \%\ AR
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'Lft" 3
b .-,' A
0l ‘
. {
B ”
,‘.:::
S~
S Therefore, if m 1s relatively prime to p, there are no zeros of
N a
N (4.23) outside the wunit circle, and there is no suppression of
iji: higher harmonics of yt.
.jij Rule 2: From (4.23), if |sinB/sina| < 1, the chance to get all
e
the zeros to lie within unit circle is high, but it is still not
ii; guaranteed.
‘)" -
O
SO After this preliminary selection process, all zeros of (4.23) can be N
..‘-_, -
checked by numerical solution. Reselections of a and B may be i
L g
. needed. 5
.. ) v ‘
Sy 4.4.2 STC With Multiprobe Measurement :
jlﬁ Multiplying (4.1) by pd, the model of the GAC system becomes 3
)-1)‘. .
rr
- ‘;J -1
A(d -d +6°7) = - - +687) + g .
) (d, =d _+87) =B =d __+87) +Cz )E" (4.31) i
05 o
}2} where dt is the measurement from the multiprobe method and -
- ep () (4.32)
ek T Td Ye-k :

- -1
§ = Pd(z )6t

t
.2 . -1
A E- =P (z )§
: 1': t d t
;}5 For the minimum variance control criterion,
b
s 2
A M
e in E[dt+k|t]
o

the self~tuning control algorithm is similar to (4.11) and (4.12).
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The model for parameter estimation is

S - - +6” ¢ -5 - - .
(ut dt-—p+k t+k) * c(dt-p st )+ et (4.33)

and the control law is

”~ ~
- + - - P
F(dt dt__p Gt ) + G(ut dt-p+k + 6 t+k)
t(d 5 (4.34
+ - ‘< = 4,
t-p+k t+k) 0 34)

Since Pd has at least one zero on the unit circle, and possibly has

unstable 2zeros, the control input u, can not be calculated directly

ettt At I e b i S

by using (4.32). Any errors 1in ut’ and UgsU_jseees will not be
damped out by P;l. The solution for this problem is to compute
O = ’+ -
u (u u_g aut_g) /b
and
u, = Pu, (4.35)

where p, called detuning factor, is a scalar and

0<p <1

The introduction of ;; and p is similar to that used in [26]
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- !
u '
£ 5
u =
t 1+ i
/g,
'y
f%f where Q/g0 is the weighting factor of ut to stabilize the nonminimum \
‘2:: phase system in the generalized variance control. The selection X
o criterion of p is that the more unstable the zeros of Pd are, the
’15{ smaller p is. Normally, a smaller detuning factor results in less
At
o :
e optimal output. ;
oy
. The previously mentioned properties of stability, convergence,
o
-H;{ and robustness can be readily applied here. Conceivably, however,
Tfﬁ the performance would be slightly affected, since the objective 4
] function is d instead of y , and the detuning factor is less than
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CHAPTER 5

SIMULATION OF THE GAC SYSTEM

Simulation is an important tool for evaluating the effectiveness
of the self-tuning control algorithm. The stability and convergence
properties described imn the 1last chapter are based on certain
idealized assumptions. They provide, at best, qualitative guidelines
for assuring or improving the algorithms. Still, there are some
questions in real applications that are very difficult to answer
through theoretical analysis. Most of them are related to the
robustness of the algorithms, such as: nonlinearities in the physical
process and controller, insufficient number of order in the system
model, finite precision in numerical computation, and so forth.
Simulation can, however, easily and quantitatively show the best
performance that the contrel algorithm can achieve under these
practical considerations. And simulation can determine the
appropriate numerical range for the ad hoc factors, such as: the
forgetting factor in parameter estimation, the weighting factor in
weighted minimum variance control, and detuning factor in GAC system
with multiprobe measurement. Also, another important advantage of
simulation is that 1t can provide experience in significantly
lowering the possibility of failures or damage .n setting up a real

system.
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There are two approaches for simulating a physical process:
digital and analog. The analog approach is to simulate the process
by using electric or electronic wirings. The analog one is
convincing, while the digital approach, by using a digital computer,
is superior as it is versatile enough to simulate various complex
situations in the real system such as, time delays. Therefore, this
chapter is devoted to the simulation on a general purpose digital
computer, a CDC 6000 system. The simulation with analog wirings and

microprocessor controller will be discussed in the next chapter.

A proper simulation model is not merely the one which contains
as much complexity as the process may have, but it must also be one
whose dynamic behavior 1is in coincidence with the practical
observations. For machining processes it 1s well known that chatter
or instability will occur whenever the wmachining system has
insufficient stiffness and damping. This important phenomenon will

be shown in the following simulation.
5.1 Simulation Model and Conditions

A finishing process of plunge grinding or cutting, as shown in
Fig. 4.1 and Fig. 5.1, is simulated. The specified infeed, Ys(t),
increases at a constant rate and then stays at a desired part
dimension for two or more revolutions. In this text we assume that
this feed motion is provided by a conventional hydraulic or electric

drive. The control action, which 1s wusually small and of high

frequency, can be generated by a separate precision actuator embedded

in the tool holder or in the spindle housing. The piezeoelectric
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(a) specified tool infeed

Ys(t)
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Figure 5.1 Plunge Cutting Process
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translator {54,21,19]) is an excellent device for implementing the
precision actuator, The separation of the control motion and the
feed motion is advantageous in releasing the complicate coordination
between the basic NC functions and the feedback control. Also, the
specially designed tool holder, with the kit consisting of a sensor
and a microcontroller, can be easily reinstalled in any other similar
machine tools. This will simplify the wanufacturing of the machine

tool and the maintenance of the precision actuator.

To simulate the machining dynamics on the digital computer, the
discrete transfer function of the machine tool structure given in

Appendix 1 is used. A nonlinear process, Yt-max{Yt’, Y } as shown

t-p
in Fig. 5.2, 1s added to account for the loss of contact which may
occur in finish cutting. Nevertheless, the derived self-tuning
control algorithm, based on the 1linear model, will be used for
testing its robustness. Unless stated otherwise, the simulation uses
the following data:

damping ratio of MT (S) = .05

natural frequency of MT (wn) = 9,55 Hz = 60 rad/sec

speed of work spindle () = 100 rpm

sampling period (T) = 10 msec

regenerative time delay (p) = 1/ (QT) = 60

total number of samplings (N) = 900 (i.e. 15 revolutions)

system time delay (k) =}

feedrate = ,24 unit/rev = ,004 unit/sample
The dimensionless data of feedrate 1s chosen only for numerical

convenience. Thus, appropriate sensitivities of the transducers and
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Y, -Y
t - -
t-o 1-2 P -
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e CP ] LT {Y' Y } e
‘ -+ ax t' t’p
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Figure 5.2 Simulation Model
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the power amplifiers are assumed for the simulated geometrical errors

:‘. and control inputs. The selection of natural frequency, w znd
’E;k' sampling period, T, is done according to the rule of thumb, wnT in
: _‘.::1.'

(- < the range of 0.25-1, or 6-25 samples in each period of the resonant

response of the closed loop system [113]. It can be easily shown

2;¢~ that for different wn's the simulation results will be identical, if
ity
(oo w T remains the same. Therefore, the simulation results in this
b {4

chapter can be applied to systems having higher natural frequencies.

NN The system delay, k, can be greater than one if the positions of

S measurement and control are not at the same spot. The delay due to

;{" computation is assumed to be negligible.

s

;zj: Another important parameter not mentioned above is the stiffness

@C;: - ratio, (kc/km), discussed in Chapter 2. The larger the ratio is, the
more unstable the uncontrolled machining system is. Therefore, this

k- ratio will be varied to test the control performance at different

52}5 stability levels of the machining system.

K

T The simulation is divided into two major parts. The first part

S is to test the performance of the control strategy by assuming that

s

ViTsl the geometrical error Y, can be measured dirzctly. The second part

‘;ﬁ: is to 1include the reality of measurement problem and to test the

Vo

’:i; feasibility of the GAC system with multiprobe measurement. Table 5.1

h summarizes the simulation conditions for both parts,

R

b In the simulation results, the geometrical error y, is

‘§§3 represented by three conventional terms: dimensional error, which is

a1

P - the mean value of yt, out-of-roundness, which is the maximum peak to

K-

-

.
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Ny -
\¥\ peak error of y , and roughness, which is the root mean square of y .
AN t t
i . Since roughness refers to the high frequency error, its value will
:: not be counted and shown in deterministic systems. Notice that the
:; definitions of these terms are a little different from those used 1in
g
- practice. However, they are convenient for evaluating the
o performance of the simulated GAC system. These data are shown with
| O
.
;fy polar plots for comparison. Time responses are plotted to check the
K<
g performance of both controlled and wuncontrolled systems. Negative
" value of the responses means that the tool is away from the workpiece
f?: with respect to the specified tool path. The plots of the estimated
‘fé parameters are used for examining the behavior of the STC algorithms.
[;: 5.2 Simulation With Ideal Measurement
- In the first part of the simulation, we begin to test a stable
LY
vy machining system without stochastic disturbance in order to see how
,$: well the deterministic disturbance can be compensated for by the
- self-tuning controller. Then, some stochastic disturbance is added
<
. to the system for examining the noise rejection capability of the
- controller. The increase in stability of the self-tuning controller
can be visualized by increasing the stiffness ratio. The importance
K.~ of 1incorporating the physical insight into the mathematical model in
-
. Chapter 4 can be seen by comparing the control performance with that
ﬁ: of the controller which uses the general self-tuning algorithm as
'EF described in Chapter 3.
h:':
~{:
N =l
.Y e
..};‘. S|
by .‘-' " o
n.,"rr :.'-;
v *: .‘-
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5.2.]1 Deterministic Systems

Fig. 5.3 depicts a simulation run with the periodic disturbance
having frequency 2§ and amplitude 0.004. Stochastic disturbance is
not added in simulation. It is a stable machining system with
stiffness ratio, kc/km=1. The polar plots show that dimensional
error and out-of-roundness are almost eliminated in the GAC system.
Moreover, Fig., 5.3 shows that the GAC system makes perfect tracking
of the desired tool path through the control input which is nearly
equal but opposite to the uncontrolled response. Because of this,
the time~consuming dwell cutting or spark-out process is not needed
for acquiring satisfactory accuracy. Hence, we can have the tool
retract from the workpiece smoothly, at the last revolution of cut,
by letting Gt in equations (4.11) and (4.12) linearly decrease as
shown in Fig. 5.1b. The simulated control input also demonstrates

this kind of arrangement.

The estimated parameters in Fig. 5.3 quickly converge to steady
state values, although the adopted model order, n, is two instead of
four, the full order of the simulated system. By substituting those
steady state estimates into (4.12), the behavior of the controller
can be explained. Since the controlled yt is very near to zero in

the middle of cutting, the estimated model can be written as

-1

-] -2
(.86733 = 1.69675z2  + .867332 )(uy_; + 6.)
- (1 - 5364z " + .408972-2)6t =0

In addition, at that time, 6t is a constant
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-1 2
(1 - 1.9562912z +2z )

= ,004378 (5.1)
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The polynomial on the left hand side of the above equation can be

S0

expressed as

[Ae2r
.
4 X

1 - 2(cos 21rw'1‘)z-1 + 2-2

which represents a sinusoidal wave of frequency w. Solving for w
gives
w = 200 rpm = 20

which is the frequency of the periodic disturbance in the simulation.
This explains the usage of a sinusoidal control input in Fig. 5.3 for

countering the periodic disturbence. In addition, let

AR |
v e AT

(5.2)

A

where up is the sinusoidal component and ug is the static component.

[}
( .

¥

‘lnlu, -

Substituting (5.2) into (5.1) gives

0

>at
Y AN S s

u, = (.1)6 = (kc / km)G

T
-~ F A A

.

The above solution explains why the self-tuning controller can

RCACX,
L Q¥ Qv

automatically compensate for the static deflection during the cutting

operation.
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Because of the discrepancy of the model order and the
nonpersistent excitation of the output, the converged parameters are
merely a set of estimates which satisfy the wminimum variance
criterion as shown above. When the specified depth—of-cut begins to
change at the end of the cut, it can be seen in Fig. 5.3 that these

estimates also change to a new set of values, accordingly, to

maintain the optimality.

A time varying forgetting factor is used in the above simulation

to 1mprove the convergence rate of the estimates and the output; it

is of the form shown below:

A= -
f1 f2/t

where t is the sampling time instant at t = 1, 2, 3, ... ,

£,0= 995, £, =.5

This forgetting factor is low at the start-up of tuning so that the
inaccuracy of the initial guesses can be forgotten as fast as
possible. The forgetting factor then increases to fl asymptotically.
f1 is slightly smaller than one to permit the self-tuning controller
to adjust itself for the environmental changes or modeling errors.

Fig. 5.4 shows a similar simulation run with constant forgetting

factor
A= ,995

It shows that the controlled response and the estimated parameters
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converge far slower than they do in the simulation run shown in Fig.

5.3. A rule of thumb, gained from simulation experience, for

selecting fl and fz is

<99 < fl < 1.0

1<
f2 < 1.0

Faster convergence rate means that the GAC system can take larger
depth-of-cut, shorten the production time, and still have good

accuracy.

As it was mentioned, the periodic disturbance may result from
the stiffness variation of the clamped workpiece. A work-chuck
assembly with three clamping jaws 1is simulated by using a time

varying stiffness ratio

(kc / km)(l + € sin(32t + 1))

eE=.,2, y=,8

Fig. 5.5 shows that the self-tuning controller can compensate for
this kind of error source as nicely as it does for the former
periodic disturbance. When the phase angle Y is varied to any other
value, the simulation results remain very similar. This is an
advantage of using STC because, in practice, different diameters of

the workpiece have different phase shifts of the jaws [81].

The polar plot of the uncontrolled geometrical error has six

lobes 1instead of three in Fig. 5.5. This is due to the loss of
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_§S contact which occurs in the last two revolutions. Same nonlinear E
N ’ effect can also be seen in Fig. 5.3, which has four lobes rather than

ﬁzi two. E
'S: To see if the self-tuning controller can compensate for two or

'\: more periodic disturbances, two sinusoidal functions R
o :
o .004 s1n(At + Y) + .002 sin(8.52t) ]
3.! .

are simulated as shown in Fig. 5.6. It shows that the geometrical

error 1s reduced somewhat but not satisfactorily enough, if the same

“ i
3 2
ﬁ‘} self-tuning model and model order are used. The time varying :
v estimates, together with the coarse control accuracy, indicate that

~
—
r

1;- the assumed model order is insufficient. As we have shown that the

cancellation of the periodic disturbance is due to the estimated

control model having the same dynamics as that of the disturbance

Q% function, therefore, the model order must increase to four when there
e
fﬁg are two sinusoidal disturbances. Under the same simulatiomn

conditions except that

H s and

w"' A-099"05/t
ixﬁ Fig. 5.7 shows that the geometrical error significantly reduces and
e

the parameter estimation converges fast again. Besides these, the

-)
o simulation shows that the frequency of the periodic disturbance need

o not be integer multiples of the angular speed of the spindle.
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Eg& - It is sometimes convenient and desirable to offset the sensing

;Z¢ area from the tool tip during the machining operation. The system |
%S? time delay will be greater than one in this circumstance. When k = E
}ég 3, simulation shows that the self-tuner we used is not fast enough to *
)

i minimize the transient response due to the abrupt change of slope of

f:;i the depth-of-cut in the last but one revolution, and is unstable in
;ii the last revolution where loss-of-contact occurs most often. A

. rational solution is to alleviate the change of slope by introducing

E;i; a perturbation input as shown in Fig. 5.lc, where

i::f A(t) = —53 (1. + cos niB=2R) ) 16 n3o < £ < Nep

= P P

‘;EE = 0, otherwise (5.3)
-

e _ The perturbation provides excitation for activating the tuning of the

iﬁ;g controller parameters to cope up with the input changes. Fig. 5.8

gsg shows that before applying perturbation A(t) the controlled response
o

et is still perfectly regulated despite the large time delay. ‘the
‘fﬁ perturbation, then, starts at the time instant N-3p. The transient

f€§ response 1is significantly reduced and satisfactory out-of-roundness,

N 0.00125, is thus obtained. Since the perturbation tends to slow down
;};E the infeed, the tool should stay at the final position rather than

i;iz retract at the last revolution.

,.:5 The simulation of the above deterministic systems clearly

&

;:ﬁi illustrates how the self-tuner behaves to achieve the optimal

Sﬁ ; performance. Next we shall find how the same controller reacts in

:ﬁ:ﬂ the presence of stochastic disturbances.
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E}{ 5.2.2 Stochastic Systems

4

LY .

')?j By adding the following stochastic disturbance .

- W =e + 2.0 + 1. + ., 4
t ot ®t-1 e, _p + #28e 4

e ec. Gaussian white noise with zero mean and rms .002 *

to the same machining system, Fig. 5.9 shows that, compared to the

uncontrolled result, the controlled dimensional error is minimized ;
significantly and the out-of-roundness and finish are also reduced by
half. The controlled finish, actually, is very close to the rms of
- et, the minimum that an optimal controller can achieve. The periodic
" disturbance is smeared by the stochastic disturbance as can be seen
in the plots of the time response. The estimated parameters,

therefore, do not reflect the dynamics of the sinusoidal disturbance -

any more. Instead, they constitute a suboptimal controller to '

minimize the variance and the bias of the output. Increase of the

J
i?ﬁﬂ model order to four, full order of the simulated system, will A
v 1
”}*' slightly improve the geometrical accuracy. Nevertheless the true N
- J"‘-_‘ L)

parameters of the system can still not be identified. This is the
general characteristic of the implicit type of self-tuning control
when the desired response is not spectrally rich enough. Besides, E
the insignificant improvement in accuracy by the full order means
that the implicit type of controller is rather robust for a mode of
lower order. For higher level of disturbance, Table 5.2 shows that

the self-tuner maintains near optimal accuracy.
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Table 5.2 Simulation Results of Different Disturbance

Levels and System Delays

simulation| DIMENS OUT-0F- FINISH
condition ERROR ROUND [RMS]
-7 0.00020 0.01074 0.00242
(-.00162) (0.02097) (0.00552) |
-8" 0.00070 0.02217 0.00469
(-.00048) | (0.04205) | (0.00955)
-9 0.00226 0.04411 0.00879
(0.00360) | (0.07682) | (0.01801)
I-10** 0.00161 0.02009 0.00444
(=.00162) | (0.02097) | (0.00552)
-11"" 0.00122 0.01877 0.00469
(-.00162) | (0.02097) | (0.00552)

(data) ~ result of uncontrolled system

* ~ high level of discurbance (see Table 5.1)
** <~ large time delay (see Table 5.1)
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b :
EL; When the system delay k is greater than one, as we have learned,

ffr perturbation in the last few revolutions of machining is necessary to

‘i ? alleviate the input changes and make the controller stable. This 1is .

Ei.l particularly true in a stochastic system. Only with the Ji
\ﬁf perturbation, (5.3), we can obtain the geometrical accuracies as -
Q%E shown in Table 5.2 for k=2 and 3. The results, though quite poor i

fSi compared with those for k=1, are still near optimal, because the ;

R theoretical rms for k=2 1is 0,00448, which coincides with the ;
;;3 simulated results. The change of the output variance due to the i‘
iiﬁ increase in time delay may not be so large as was obtained through §
‘ : simulation. It depends on the actual dynamics of the stochastic i

;'¢: disturbance and the system in real operation. A good practice is to i
§ reduce the system delay for measurement as much as possible.
R o
e The important phenomenon of the machining process, chatter, can 1
i%ﬁ be simulated by increasing the stiffness ratio. It is found by ;

:tﬁ simulation that the uncontrolled system begins to be unstable as the 5
5:7 stiffness ratio increases to .15, which is close to the theoretical ;

i:? value 0.105. Fig. 5.10 shows that, when the ratio is 0.20, the a

 §%§ uncontrolled system becomes more unstable and produces regenerative s

chatter. And, as the theory in Chapter 3 predicted, the chatter

ot frequency is 10.8 Hz which is slightly larger than the natural

L}

g S
{lf frequency, 9.55 Hz. The controlled system, however, remains stable >

with accuracy as satisfactory as that shown in Fig. 5.9. The

1

]
ha = &
2 At

x'a

stiffness ratio can even be raised to 6.0, as shown in Fig. 5.11, and

.'I{J\\ i R

the controlled system maintains good geometrical accuracy.

A Y
[Ye)
.

;

Therefore, the increase in stability is at least by a factor of 40
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) K
S o
Y e
-~ Y
S (=6.0/0.15) in the simulation. It is comparable with the results of "

‘ S

N Comstock et al. [29] and of Nactigal and Maddux [76]. According to o

A

. ”, v.. ;
;3 the analysis 1in Chapter 4, since the simulated system has a stable -4
N\ - n:..‘
1#2 polynomial B(z 1) in (4.1), the controlled system is stable no matter :{
) how large the stiffness ratio is. This is similar to what is claimed ks
ML -
)2 by Mitchell [66] that a factor of 1000 increase in stability is -

5 -
;: attainable. Experimentally, however, the stiffness ratio is found to ::

be of the order of 0.5 to .02 and damping ratio to be about 0.25 to
L4 0

. A\
“% 0.01 [104]). Therefore, it 1s more appropriate to say that an §
4 X
*f accurate and chatter-free machining can be obtained by means of the -

‘ L]

- \)
R self-tuning controller. éﬁ
‘ '.' \-:
5 .
t;; To see the necessity of incorporating the physical insight into *

the self-tuning model, the general model in Chapter 3 is tested and ;
A compared. A constant but unknown term is added in the model to .t
V:- account for the static deflection resulting from the cutting load. .
3% k.
}{ With the same order of model and other simulation conditions as those o)

of Fig. 5.10, the general self-tuner also results in a stable system -
ﬂ;f as shown in Fig. 5.12. The controlled accuracies, however, are much t:
SR -

i worse than those of Fig. 5.11, which uses the proposed model and -y
il operates in a more adverse condition, kc/km-6.0. It is found that, as \;

; N

the stiffness goes higher, the controlled inaccuracies of the general »}
~ N
vég self-tuner become unreasonably large and the system can be considered 3
T as being wunstable. Hence, careful modeling of the process to be ;F
AN
ti: controlled is very important to enhance the effectiveness of self-~ '\
O AN
:f: tuning control. "
o -]
:v:.._‘ g
2 .
¢ -
1N
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:{2 5.3 Simulation With Multiprobe Measurement
2
‘i- The second part of the simulation is to test the GAC system with
;{- multiprobe measurement. The interesting properties of the multiprobe
?J: measurement, as we have analyzed in Chapter 4, can be verified by
ey simulation with deterministic disturbance only. Selecting proper
4..}.
(é value of the detuning factor is very important to achieve geometrical
:"J accuracies as good as those of the former simulation. With the
a4 stochastic disturbance added in, the performance of noise rejection
\."::
20 and increase in stability can be evaluated.
5.3.1 Configuration of Probes for Simulation
==
;;; The configuration of the multiprobe measurement, as shown in
'i;i Fig. 4.3, is as follows:
e 4] o
< a =90 , B = 30
e
’,\.-._.
2 and thus, (4,21) gives
2 N
o -1 2 =5 1 -20
‘.ig Pd(z ) =—-2z +— 2 (5.4)
oy 3 3
I“.\
e = which has the following characteristic roots:
[ o
:1; js o o o
- 0.933 e, 6 = £25,55, %46.45 , %97.55 ,
5
L2 o
- $118.45°, or £169.55
o

o
" 1.000 e3°, 6 = 26°, +66°, +78°, +138°, or £150°
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:}_ This arrangement is favorable for the self-tuning control because all

! _I

L

-1
the zeros of Pd(z ) 1lie inside or on the unit circle. However, from

. * * 2
'x (4.30), it suppresses harmonics with frequencies mQ , where m

:Q equals to )
pL ]
!:Q m* = mod[-—-—!ﬂl———— ] ] m =15, m, =5, p =60 ::
j ged(m ,mg) P Ph Ty > 7B ’ N
et -

= mod{12k * 1, 60}, k =0,1, 2,...

B .
}_-' '{5
o -
. v
o =1, 11, 13,... £
LN !
- &
‘o We shall find what the controlled geometrical errors would be, if the it

S 4
{t periodic disturbance happens to be suppressed by the multiprobe :i
o =

measurement. Solutions will be made to overcome the control §
- deficiency in this type of situation. Y
- At
o 5.3.2 Test of Detuning Factor .
3 N :‘
o As stated in Chapter 4, pd(z ) has at least one zero on the 2
15 unit circle; therefore, a detuning factor, 0 < p < 1, is needed in :%

N ]
g -
¥ (4.35) for computing the control input. Without using the detuning

factor, 1i.e., p=l, Fig. 5.13 shows unsatisfactory control results :41
Wy 0
:§ under the same conditions of simulation as shown in Fig. 5.3. We see %~
d that the uncontrolled response is replaced by the controlled response ;

b which has compound sinusoidal wave behavior during cutting. This

a
fi compound wave, through spectral analysls, consists of harmonics with
.

3 frequencies 2, 1IR, and 13?2, which are the components invisible to
L the multiprobe measurement. When the detuning factor is added in,
";-c 2
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Figure 5.13 GAC System With Multiprobe Measurement
and Periodic Disturbance (3imulation II-1)
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R :
;&; p=.95, Fig. 5.14 shows that this compound wave dies out
: | asymptotically, and satisfactory geometrical accuracy is obtained :
?t% thereafter. The controlled response also shows that, due to the K
NS
%ﬁ; detuning factor, the controller acts less optimally. The specified X
e infeed is not tracked as perfectly as that in Fig. 5.3 during the ,
-}ia operation. Therefore, 1instead of retracting the tool, the tool is }
éii commanded to stay at the specified position in the last revolution of i
‘ cutting. This gives the self-tuner more opportunities to reduce
;gi; excess geometrical errors. ‘
1 ‘
:?:: 5.3.3 Test of Invisible Harmonics }
:Efé For the case of suppression of harmonics in multiprobe i
,a?{ measurement, Fig. 5.15 shows that the geometrical errors resulting E
N from periodic disturbance with frequeucy f can not be removed from :
j&¥ the GAC system. This result is quite understandable because the E
iﬁi multiprobe measurement is unable to detect any errors having this E
‘?: frequency. The simulation, however, shows that the higher harmonics '
‘igg in the uncontrolled polar plot, which result from the nonlinearity of
'égé the system, can be compensated for by the controller. The geometry a
h?: of the controlled machined part 1is a near perfect but eccentric :
;(é: circle. The indicated out-of-roundness actually represents twice the ?
‘ﬁE eccentricity of the machined part. For products whose roundness is ;
LS N
:}:Z much more critical than the eccentricity, the GAC system with ?
kf: multiprobe measurement is still very effective. Otherwise, the best Ei
E;é: way 1is to balance this periodic disturbance before the cutting Ef
;:% operation takes place. J
1 .
k‘ . ‘;. W
A -
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Figure 5.15 GAC System for Once-Per~Revolution Harmonic
Invisible to Multiprobe Measurement
(Simulation II-3)
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The suppression of the fundamental harmonic 1is common to all
configurations of the multiprobe measurement. The next higher
suppressed harmonic of this particular configuration is of frequency
11Q. Conceivably, Fig. 5.16 1is obtained by showing that the
reduction of the periodic disturbance is very small. To overcoue

this deficiency, the configuration is changed to
o o
a = 132 , 8 = 30

that is

-1 =5 ~27
Pd(z ) = 2,40487 - z + 1.61803z

which has unstable zeros

Qo (o]
+5140.43118 +3773.18414

1.00288 e , 1.00444 e

And, from (4.30), no harmonics are suppressed by this configuration

except the fundamental one with frequency .

-

1
Since some of the zeros of the new Pd(z ) lie outside the unit

circle, 1lower detuning factor, p=.85, is required to stabilize the
control system and result in satisfactory accuracies as shown in Fig.
5.17, However, the low detuning factor also detracts the performance
somewhat. Other counfigurations can give similar results, too. It is
found by simulation that the farther the unstable zeros of Pd(z-l)
are away from the unit circle, the lower the detuning factors needed
is, and the less satisfactory the accuracy can be. The configuration

with a = B has all zeros of Pd(z ) on the unit circle, but it is
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Figure 5.16 GAC System for Higher Harmonic Invisible to
Multiprobe Measurement (Simulationll-4)
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Figure 5.17 GAC System With Modified Configuration of
Multiprobes (Simulation II-5)
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very possible to miss the detection and the control of the
disturbances having frequencies not equal to integral multiple of
frequency §l. The determination of the probe configuration depends
on the convenience of the spatial arrangement of the probes, the
prior knowledge of the disturbance frequencies, and the locations of

-1
the zeros of Pd(z ).
5.3.4 Test of Stochastic System and Stability

Here, we return to the original probe configuration
corresponding to u-90° and B=30o. Under the same conditions of
simulation as those used in Fig. 5.9, good control accuracies are
obtained as shown in Fig. 5.18 in the presence of stochastic
disturbance. The selected detuning factor, p=0.88, is smaller than
that used in Fig. 5.14, equal to 0.95. In general, a stochastic
control system requires a lower detuning factor t'.an a deterministic
system does. The forgetting factor, however, changes in the opposite
direction because the self-tuning controller needs more data for
variance reduction 1in the stochastic cases. Also, it is found by

simulation that a large forgetting factor is good for a low detuning

factor. Therefore, the forgetting factor
A=1,0-.5/t¢t
is used in Figs. 5.17 and 5.18 and the following simulation.

As the stiffness ratio increases to 0.2, the controlled system
remains stable and accurate, again, Comparing the controlied

responses of Fig. 5.19 to those of Fig. 5.18, we see that, in the
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Figure 5.18 GAC System With Multiprobe Measurement, Periodic
disturbance and Stochastic Disturbance
(Simulation II-6)
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middle of the operation, the static error in Fig. 5.19 is
approximately twice that of Fig. 5.18 with the same detuning factor.
And, as shown 1in Fig. 5.20, this static error increases
proportionally when the stiffness ratio goes up to 2.0. The system is
still stably controlled. However, in the stage of dwell cutting, the
static error decreases more slowly than the specified depth-of-cut.
Consequently, increase of the duration of dwell cutting will result
in better geometrical accuracy. In Fig. 5.20, an extra revolution of
dwell cutting is added and satisfactory accuracies are obtained as
shown. The large dimensional excess suggests that another revolution

of dwell cutting can be beneficial.

The increase in stability, found by simulation, is by about a
factor of 20. The detuning factor is the main reason for the limited
closed loop stability. However, the improvement in performance is

quite significant.
5.4 Summary of Discussions

In the first part of the simulation, where the measurement
problem is not considered, we observed the following:

(I.a) Deterministic disturbances can be fully compensated for by the

>,
>

self-tuning controller irrespective of the amplitudes, the frequency

contents, and the types of the disturbances.

P )
0]y

(I.b) A time varying forgetting factor is very usetul not only to

speed up the convergence at the startup stage, but also to enhance

the adaptability of the controller for the environmental changes or

A 2 ot e o ol A Siniie

modeling errors.
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(l.c) Self-tuning controller gives perfect tracking during the
operation. However, 1if the system time delay is greater thar one,
the controller may not be able to follow the input change as quickly
toward the end of the cutting operation. Perturbation can be added
before and during the input change. Transient response will thus be
reduced.

(I.d) In the presence of various levels of deterministic disturbance
and stochastic disturbance, the implicit type of self-tuning control
is successful in accomplishing near optimal performance with lower
order model. The controller we used is robust,

(I.e) The increase in stability can be by a factor of at least 40 for
the self-tuning controller. In other words, the self-tuned system is
chatter free.

(I.f) A self-tuning model derived with physical insight into the

machining process can give much better performance than the general

self-tuner.

In the second part, multiprobe is used to tackle the measurement
problem of the GAC system. By simulation, we have the following
important findings:

(I1.a) A detuning factor is crucial for the success of the GAC system
with multiprobe measurement. Normally, 1it has a positive value
smaller than one.

(I1.b) The multiprobe measurement always suppresses certaln
harmonics. Those disturbances, thus, cannot be reduced. For the
disturbance with the same frequency as the spindle rotation, the GAC

system can not do much except removing disturbance induced by the

el Dl ek J

~
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nonlinearity of the system and generating a perfect round but
eccentric part. For higher harmonics, the uncontrollability can be
avoided by selecting the probe configuration properly.

(Il.c) The probe configuration determines the zeros of Pd(z-l). The
farther the unstable zeros are away from the unit circle, the smaller
the detuning factor used should be, and the less satisfactory the
geometrical accuracies obtained are.

(II.d) Stochastic systems need a lower detuning factor than
deterministic systems. The detuning factor can be adjusted together
with the forgetting factor to get better performance. The detuning
factor limits the increase in stability which the GAC system can get.

However, the improvement is still very satisfactory.
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CHAPTER 6

A COMPARISON OF STC AND FCC

- As stated in Chapters 1 and 4, the stochastic properties of
machining processes should be considered while modeling a GAC system
for removing the nonrepeatable machining errors [47,48,77,78].

N However, research engineers have just started to accomplish this
actively in recent years. Rao and Wu [84] proposed "compensatory
control" for roundness control in cylindrical grinding. Of late this

v

%S technique was expanded and called "forecasting compensatory control"

(FcC) [54,55,68,69].

Basically, FCC 1is a GAC me thod which uses in-process
t}:f measurement. The machining process 1is modeled bv a stochastic
process, AR(m), in FCC. The compensation is obtained by giving an
input which cancels the error predicted by the stochastic model. The

%u. modeling strategy of FCC ignores the relationship between the inputs

and the outputs of the machining system. Also, it lacks a systematic
approach for designing the compensatory controller. Thus, the

\ -
NP performance of the compensated system can hardly be assur.d.

Realizing this, we propose the STC method in Chapter 4 for

cylindrical machining processes. This technique adopts a more

rigorous modeling and control strategy. The stochastic model is

deduced from the machine tool dynamics which has been discussed in
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uﬁsj Chapter 2. Therefore, the self-tuning controller can be designed and
?‘T' analyzed systematically for a better control performance.

LY

L The objective of this chapter is to compare the performance of

AeN

f%;? these two control strategies by theoretical investigation, digital

A

o simulation, and analog test. In theoretical investigation, the

.jf: theoretical control performances of both control techniques are

ti examined in the aspects of command tracting and disturbance

33{ rejection. In digital simulation, a metal cutting process is

.}f simulated to test the machining accuracy and stability obtainable %
i;{; from both strategies. The analog test is to compare the control é

s performances of both strategies which are subject to the constraints

of finite word length and sampling in microprocessor based control

- >
L}
X
oL
NINPR| IR

systems.

6.1 Theoretical lavestigation

¥ ! 12
't (.

For simplicity, a general single input single output (SIS0)

. system, as shown in Fig. 6.1, is used for this comparison. All the

variables and dynamics are presented in discrete time domain. The

{;: dynamics of the process, G, 1is assumed to have the following

IS

NN P

T transfer function

> -1 -1

At G =B(z ")/ A(z ") (6.1)

p .':\ p b
N where g
o .
-."-‘ A

_l - -

R4 A(z ) =1+az + ...+az '%

s
.

o k 1

..". - l - . -

0 B(z ) =12 B (z )

o
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o - -1 -
=2z (b +b 2 + «ea+ bz )
0 1 n

-1
and z is a backward shift operator. The coefficients, ai's and

bi’s, are related to the dynamic characteristics of the process, and

they are considered to be unknown in adaptive control. The order n
and the time delay k are, however, assumed to be known here. The

o deterministic disturbance z and the stochastic disturbance w are
t t

unmeasurable, but bounded. The observed output y 1is fed to the
t

controller G , where the control input u is generated by the
c t

specified control strategy or algorithm.,

STC

The design of the STC controller 1is based on the certainty
-, equivalent principle. Therefore, we shall first discuss the design

of the optimal controller as a convenient way for investigating the

fﬂj: theoretical control performance of the STC sysetem. A theorem for
_}3: the STC controller, then, will be presented to substantiate the
ASAY

findings.
Fif: The output of the system as shown in Fig. 6.1 is governed by
AN

y =Gu +z +w (6.2)
t pt t t
To simplify the comparison, the stochastic disturbance w <can be
t
omitted presently without loss of generality. Hence,

Since most of the stationary deterministic disturbances are constant

Y S T TRy T T i vy T v
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or periodic in the time domain, one can always find an operator of

h the form

such that

P(z 1)z =0 (6.4)

B'(z- )
= + z (6.5)
t Az 1) t-k t
Suppose that the output vy , can be predicted bv the linear
t+

combination of the observed outputs and inputs, that is,

-1 1
Yerk = F(z )yt + G(z )ut (6.6)

where

the control input should be

*
Thus, for the desired output Yetrk?

-1
1 * F
Yo T Yedk T <z—l> Yt (6.7
G(z ) G(z )
Substituting (6.7) into (6.5) gives
el j,j.:‘ o e : O : :
J‘nt\‘-\..fn\;\'_':h\ R T T T S AT S T JH A S A Y. WAEIA D AU I SRR NPOR O VWL S adadatiaihEu temiaiuiadis




MIRCARA S A AL AL LS Sl Salph I A0 R dal fut S el tul b il Aa i sal vall tal v allor ol on ot hal tal air Al Sal ~at g ma kol - b calt -ak ool et oo T~ ——

e 125

[ - B~ * AG

1] = + 6.
2 Ye+k ~ AG + BF t+k & AG + BF ‘t+k (6.8)

R0 where the operator z_1 is omitted for simplicity in the expression.
S *
., {‘:\ } =
:i;? In order to achieve Yerk = Yetk? F and G must satisfy
"Ll
. ~k__
o B = AG + BF = AG + z B°F (6.9)
R(-".. Gzt+k =0 (6.10)

From (6.4), if P is a factor of G, the condition (6.10), cancellation

1l%ﬁ of the deterministic disturbance, will be satisfied. Also, the
n'i.s‘:. -l -l
o condition (6.9) requires that there be a factor B“°(z ) in G(z ).
fj‘ Therefore,
G = EB°P (6.11)
A where
v
~_\v—“ -
o E=e +e2z + .u0
4 1
i\' .l
" "l,
Y Substituting (6.11) into (6.9) gives
¥ ,'(-\.'U
W ¢
oy
; -k
hj 1l = APE + z F (6.12)

There exists a unique solution for E and F in (6.12), if the order of

rﬁf} E equals to k-1, and the order of F equals to n+s-1].

ey

e The above derivations demonstrate that the system can be
< J‘.‘-"

- --,’-‘: *

" optimally controlled, Yo = Yoo if the controller (6.7), with F and G
s

Co- - satisfying (6.11) and (6.12), is used. In STC, where the polynomials
e

;Iﬁij

3028
g

e :

s T e

_—ad




-
-

S

Ao

ii: F and G have to be estimated through a certain adaption mechanism,
the same optimality can also be achieved. This can be seen from the
-.E:'fj following theorem [39]:

F-¥ Theorem: If the system (6.5) satisfies

O (1) all the zeros of BP lie inside or on the unit circle.

;3%; (i1) all the zeros of transfer function B/A lie strictly

"; inside the unit circle.

- (iii) the zeros of the polynomial BP on the unit circle have
ﬁ;ki a Jordon block of size one.

:,, the self~tuning controller
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a
(]

+ .
K Fyt Gut (6.13)

T
— 8 =9 + S ( - 9 ) (6.14)

G TS T

.-

T

L, S S

e S = S _ t-2¢t—k¢t—k t=2 (6.15)

t-1 t-2 1+ q’T s, .0 *

t-k"t-2"t-k

i where

\,.‘:' 4
:'C T §
";':‘j:' et = [r09fl9"°’go’glv'--] i
Tl T )
i:_::-. ¢t = [yt:yt_19-0°9ut’ut_1] X
128 ]
' will lead to a stable closed loop system, and the output will ’
'R0 * 1
‘;§ converge to y,  asymptotically. 3

s §
Ea -
el <
At

:_-.f,-. The inclusion of the polynomial P in the above assumptions,
Wiy

._} which results from the existence of the deterministic disturbance Z,

)

4
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R
fgxf can be taken away if P has no multiple roots on the unit circle. For
;~: the system having the stochastic disturbance in addition to the
1 Y
h \J
:h deterministic disturbance, the above self-tuning controller can be
;3}, extended by incorporating extra parameters in 6 to account for the
"R t
!kﬂ dynamics of the stochastic disturbance. Again, the disturbances can
ﬁﬁi be reduced and the specified output will be tracked [39].
%‘-Z
[\
Y An important point of the theorem 1is that the estimated
L
. polynomials F and G are not necessary to satisfy the relationship as
w:%: (6.12) for the optimal performance of the output. This usually
:ﬁﬂﬂ happens in the applications of STC, particularly for the above type
aud of self-tuning controller which estimates directly the parameters of
ﬁ};: the controller rather than those of the process to be controlled.
N
;}i The STC system will find its own parameters to satisfy the control
E
objective. This can be seen from the simulation results in the next
" section.
.
o FCC
W,
}:f: In FCC, it 1s assumed that the output of an wuncontrolled
&t%: machining system, yt, can be fitted by an autoregressive model, AR(m)
- (83)
o
- o’yt = e
-~
';L'n
o
YR . . -1 ., ™
e " =1 =%z - - ¢z
S 1 m
I’,_.',
1’\-'.
i:f: This model can be derived from (6.2) by letting ut-O and converting
*iér the disturbances into an autoregressive process with white noise e .
Vel t
7
ﬂ.."":
b
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By the following factorization

1 = ¢°E + 2z Ko

Eme +ez ) + + k1
eO elz see ek_lz

¢ + =1 . . -m+1]
¢0 ¢lz ese ¢m-lz

the output yt+k can be predicted by the 1linear combination of its

previous outputs at time t, t-l,..., t-m, that is,

Yeek = Ve * Ferag

= ¢y (6.16)

For the desired output Yerk? the control input of FCC is [84,54,55,
68,69]

* %*

U T Yerk T Yeak T Verk T e (6.17)

For the system with deterministic disturbance only, substituting

(6017) intO (605) giVes

B A (6.18)
Yesk T A+ B- Vt+k | A + B® Ct+k .
*
Equation (6.18) shows that it is not possible to realize y =y
t+k t+k
or to cancel z , provided that the control law (6.17) is used. The

t+k
reason for the inability to fully track the specified output or

eliminate the disturbance is that FCC does not consider the dynamic

~

ST - .
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relationship between the system output and the compensation input,
This 1is not the case for the in—-process control of the machining

8 yStEIn-

*
When y =), from (6.18), it gives
t+k

A
PR

Vek " a7 B (6.19)

t+k

The above closed loop system is the same as a conventional control
system with a unit negative feedback. The simulation in the next

section will show this characteristic.
6.2 Digital Simulation

In digital simulation, the plunge cutting process described 1in
Chapters 4 and 5 is simulated and both techniques are tested on a CDC

6000 computer system,

The model used in STC, from (4.1), is

Aly -y + 6 ) = B(u -y + 8 ) + ce (6.20)
t t t t

t-k t-p

where

-1 -n
A=1]+az2 + see + az
1 n

-1
= + eee +
B bo + blz bnz

-1 -n
C=1+c¢c 2z + oot C 2
1 n

The STC algorithm, from (4.]11) and (4.12), 1is to wupdate the

5 R R
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parameters of F,G, and € in the following model

= F( - + 6 )+ G(u - + 48 ) +
yt y:-k yt-p-k t-k t-k yt-p t

(yt_p R . (
and to generate the control input by the following control law

- (-1 F(y - 5 - -
u ( /20)[ (Yt yt-p + t) + (G QO)(ut yt—p+k + 6t+k)

+ ¢ -8 )]+ -6 6.22)
yt-p+k t+k yt--p~4-k t+k ¢

In designing the FCC controller, the model for parameter

estimation is

y, =39 3

+ + eve + + + € 6.23
R " LA e (6223

17 t=k-1 17 t~k-m+1

where the estimate § 1is added to account for the nonzero value which
m

may exist in yt. And the control law 1s

u = - - - ees = - 6.24
t aOyt ¢lyt-l ¢m-1yt-m+l qsm ( )

Recursive least squares method 1is wused for updating the
parameters of both control techniques, Because of the existence of
the deterministic disturbance the order of the model in (6.20) is not
less than four. However, to test the robustness of the STC system
for the reduced order of the model, n=2 is assumed. Hence, there are
seven parameters to be estimated in (6.21) -
ro,rl,go,gl,gz,el, and 62. For the same complexity in parameter

estimation, therefore, the order m in (6.23) is assumed to be six.
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The simulation results depicted in Fig. 6.2, where the

stochastic disturbance 1s set to zero, demonstrate that the
originally unstable cutting system, kc/km-O.Z, can be stabilized by
the self-tuning controller, and the machining error can be nearly
eliminated. The polar plot represents the final geometrical error of
the machined part. The control input shows that the self-tuning
controller automatically compensates for the unknown deterministic
disturbance and the structural deflection resulting from the nominal
cutting force. The estimates go , gl and gz, which are related to
the control input, satisfy (6.4). It shows how the self-tuning
controller adjusts 1its parameters to counter the deterministic L

disturbance.

For the stochastic machining system as shown in Fig. 6.3, STC, .

again, stabilizes the system and produces good accuracy. The error
left on the machined part has the root-mean-squares (rms) value
approximating to that of et in Chapter 5, 0.002, which is the minimum

value we can get.

When the structural compliance is doubled, k /k =0.4, the
c m
uncontrolled cutting system becomes more unstable as shown in Fig.

6.4. The STC system still shows good stability and accuracy.

As mentioned in the theoretical investigation, the STC algorithm
used 1in the above simulations belongs to the direct or implicit type
of adaptive control [39], which tends to update the estimates for
minimizing the output error rather than for matching the true

parameters. Hence, we can get the optimal or nearly optimal output
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despite the nonconvergence of the estimates. Furthermore, the linear

and reduced-order controller provides a certain degree of robustness

2
A
. by showing satisfactory stability and accuracy in the simulated
‘ system which has a more complicated structure.
Figs. 6.5 and 6.6 show the simulation results from FCC with the
':fl simulation conditions corresponding to those of Figs. 6.2 and 6.3
-f' respectively. Although the systems are stabilized by the forecasting
compensator, the accuracies of the parts are much worse than those
B
a generated by the STC system. The out-of-roundness shown in Fig. 6.5
S is about four times that shown in Fig. 6.2. The control response and
;;. the control input show that the structural deflection during the
fi?i machining operation is only partly compensated for., It confirms the
'}f: conclusion from the theoretical investigation that the forecasting
-.‘.I‘\ -
) compensator is essentially a unit feedback controller.
jﬁ% By considering the confidence interval of the parameter
:;.:
3 estimation, the estimates of Fig. 6.6 reveal that the FCC machining
J
B system, when k = 1, can be modeled as a random walk process
-4
l‘,':‘: + (6.25) A
S = e B -
LS t H
>0 al
-e Consequently, the control input is %
2 g
s u =-y (6.26)
o t t
A al
el which is the simple compensatory control (SCC) by one step delay
:i;‘ [54]. The control inputs and the system outputs in Figs. 6.5 and 6.6
- satisfy approximately the relationship given by (6.26). The same
N
W
el
A
Y
\
l.:
8¢
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,\ky results can be seen 1in the cutting test conducted by Moon et al.
~11
N
A
{ :-::_'
;:{; For the less rigid system as that simulated in Fig. 6.4, FCC is
s

:{: unable to stabilize the system any more, as shown in Fig. 6.7.

Further simulation show that the increase in stability gained by STC

*jf; can be five times that by FCC.

b ) _"4

— 6.3 Analog Test

In the above simulation, we have compared the control
performance of the two control techniques by using the machining

model of chatter control and the experimental machining properties.

Therefore, similar control performance may be expected in the control

o of the real machining operation. However, some considerations in
real implementation still need to be tested for assuring the actual

performance. The analog test is to examine the control performance

E:;f of the two control strategies subject to finite word-length and

o
"). sampling rate of the microprocessor controller. The system setup is
L shown in Fig. 6.8.

o,

2N

.?ﬁ The electronic circuit for the test is an RLC 1low pass filter
- representing a second order dynamic system as shown in Fig. 6.9. The

ﬁﬂf input disturbance zt is a sinusoidal signal generated by a function

g o

“

;u{ﬁ generator. Without the control loop, Fig. 6.10 shows the output of
oy

v the uncontrolled system. The large sinusoidal wave in the figure

s results from the deterministic disturbance generated by the function K
o X
';:; generator. Since the circuit is not accurately made, a small wave N
e

o with higher frequency 1is superimposed to the large wave in the
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Fizure 0.8 Experimental setup tor Analog Test
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Figure 6.9 Electronic Circuit for Analog Test

Figure 6.10 Output of Uncontrolled System
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figure. This unforeseen nonlinearity is also a good source to test
“he robustness of the control algorithms. The objective of the
control function is to compensate for the effect of the deterministic

disturbance and to get the minimum output.

An M68000-based data acquisition and control system was devised
to test both control techniques on the electronic circuit. The
digital controller has a 12-bit analog to digital converter (ADC) and
a 12-bit digital to analog converter (DAC). In numerical
computation, each 16-bit data word 1is fixed-point formatted. The
higher byte represents the integer part of the data and the lower
byte stands for the fraction part of the data. The finite word-
length of the processor and the converters limit the maximum
amplitude of the control action. The maximum sampling speed of the
digital controller mainly depends on the number of parameters to be
estimated. About one millisecond is needed for the control with five

parameters.

Ouly the output signal yt is needed by the microprocessor
controller, The exact frequency and the amplitude of the disturbance
are unknown to the controller. However, the approximate range of the
frequency 1is necessary in order to make sure that the sampling rate
of the controller is sufficiently high for avoiding the aliasing

problem. In this test, the frequency of the disturbance is about 10

Hz, and the sampling rate is 100 Hz.

By using the STC algorithm as shown In equations (6.13-15) with

n=2 and k=], Fig. 6.11 shows that the variance of the output is
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nearly eliminated, and the disturbance is countered by the discrete
control input having the same frequency. The output of the FCC
system, however, is only slightly improved as shown in Fig. 6.12.
The forecasting compensator, obviously, is much less effective than

the self-tuning controller. Again, from Fig. 6.12, the forecasting

compensator behaves like a unit feedback controller.
6.4 Summary

In this chapter, we have theoretically shown that STC can
achieve the optimal control performance despite the unidentified
deterministic and stochastic disturbances. And, FCC, which works
like a wunit feedback controller, 1is 1less effective than STC in

command tracking and disturbance rejection.

The digital simulation shows that the STC technique can not only
achieve the optimal response, but also stabilize the uncontrolled
machining system. The FCC technique, on the other hand, produces
less satisfactory output as found in the theoretical investigation.
And it has less capability of stabilizing the wuncontrolled system.

The simulation also shows that the FCC system behaves as a random

walk process. Since the experimental machining properties are used
in the simulation, similar results may be expected in the control of

the real machining system.

In the analog test, the two control techniques are tested and
compared by an electronic circuit with a microprocessor controller.
The results show that STC is still more effective than FCC even with

the constraints of the finite word-length and sampling rate.
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Figure 6.11 OQucput of STC System

Figure 6.12 Output of FCC System
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A new GAC system is proposed and formulated for improving the
geometrical accuracies of cylindrical machined parts. The
development is accomplished by tackling the three major problems in

GAC: measurement, modeling, and adaptive control.

In measurement, we use Whitehouse” s multiprobe measurement to
solve the separation problem in in-process measurement of geometrical
error. New formulations are derived and analyzed for incorporating
the multiprobe measurement into the digital adaptive controller.
This is the first time that multiprobe wmeasurement is wused for

control purpose.

In modeling, the interaction of regenerative cutting dynamics
and structural dynamics is identified to be the most prominent
physics governing the dynamic behavior of cylindrical machining
processes. From this we derive a stochastic model in a discrete
form for the plunge cutting process. Both the stochastic and the
deterministic disturbances are incorporated in the model. This model

is, though linear, very usefull for designing a digital GAC system.
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In adaptive control, the self-tuning control theory is wused to
generate an adaptive control algorithm for the model we derived.
Theoretical properties of the algorithm are analyzed to assess the
performance of the GAC system in practical application and to suggest
the ways for improvement. Also derived is a modified algorithm for
the GAC system with multiprobe measurement. A detuning factor is
introduced for stabilizing the GAC system with multiprobe

measurement.

Simulations are carried out to evaluate the performance of the
developed algorithms. The results show that the proposed GAC system
not only improves the accuracies considerably but also improves the
stability of the machining system by a factor of more than forty.
The GAC system with multiprobe has similar performance, except, as
the theoretical analysis predicted, that certain harmonic
disturbances may not be controllable for some specific space
configurations of the probes. This problem can be overcome by
changing the configuration slightly and selecting an appropriate
value for the detuning factor. The increase in stability through the

detuning factor is at the expense of geometrical accuracies normally.

The simulation also show that the self-tuning control algorithms are

robust to nonlinearities and low model orders.

A comparison of STC and FCC shows that the strategies of
modeling and control we used can result in better performance than
other existing strategies. Also the comparison in the analog test
shows that the algorithm of STC does work well, as we have predicted,

in a microprocessor based control system,
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o 7.2 Recommendations Y
L — ~o
X -~
To enhance the applicability of this new GAC system, the e

. following subjects are recommended for future work: };

(1) A cutting test will further substantiate this work. As we have :'

N N
N shown in Chapter 6 that the microprocessor controller is simple ;{
+ oy

" :

:k to implement, the major work will be the setting up of sensors b

¥
. Yo

and actuators. For internal grinding or turning processes, the

accessibility of the sensors become more critical. )

e, Vet
r.":'_’.'

~i (2) 1In traverse cutting we need a reliable method for determining }H
‘i_ the overlap factor before the operation of GAC. In-process Zi
f§ estimation of the overlap factor is not practical because it .;
~£€ makes the estimation process nonlinear. ﬁ?

) g3
RE (3) The strategies of modeling and control can be modified and g:
:;2 applied to other machining processes, such as milling [102], j‘
- centerless grinding {13,85], EDM, ECM, and laser machining. j
;k: (4) Other sensors, such as force transducers and accelerometers can E?

i)
l.‘

be used 1in addition to the displacement sensor to help the 3

e
L, -
5

measurement problem and to ensure the optimal performance.

:ﬁ (5) The parameters estimated on~line can be used for monitoring the .
] conditions of the machining system during machining, such as

{j tool wear or breakage, defective spindle bearings, and other

Lo

?3 malfunctions of the machine tool.

\l

.

‘ -ﬁ'

\ -: ‘.'
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Appendix 1

Derivation of (4.1)

The continuous transfer function of the tool-workpiece structure

can be represented by:

2
w
n

1
MT(s) = —
km s2 + 2Cwns + wi

w o= natural frequency of the structure
{ = damping ratio of the structure
km = gtiffness of the structure
By taking the Z-transformation with a zero-order-hold [37], the

discrete transfer function is derived as follows:

-1 MT(s)

MT = (1 - z )2{ s }

1 Blz + 8,2

W ——

km 1 + alz-l + azz

or more generally [23],

B+ Bz 4Bz
+ Bz + B2
1 0 1 2
MT = — 7 =
ml+ az + a,z
1 2
where
e
SR Y N S R PR P S R PRt S AP NI S N e GNP LR R R AR DL AR LLUL AR L |
AL e N e e Sl : R
' n * .-"1".~ "l(ﬁ'.i‘l'.'&.‘ ) L “ . l-" I " ' ‘..‘\' AN
A . 4 » i A X ¥ ¥, 4 . A . A A




Ry
RS

S

" i
'J:‘

2 P Er P
W
A A

3

‘
PRV G +

s ey

Pl
A
el

)

T

v #

'l(l'l

A

3
L%

«

I}A.l_‘

-
LA

e'a 8 a 5 % 3

5 X3y,

-
.

BN

.l

5

11
.

SO

2t
[

LoAWATND

~-aT _ =-2aT
ul = -2¢ cos bT, a, = e
- a -
B. =1 ~c¢e cos bT - — e sin bT
1 b
-2aT a =-aT -
B, = e + — e sin bT - e cos bT
2 b
a = gw
n
2
b = W I -z

and T is the unit sampling time interval.

The discrete form of the regenerative process in Chapter 2 is

) -sT
2}
or
1 - uz-p

where the regenerative delay p 1is equal to 1/T

overlap factor is

0 <ucxgl

The cutting process CP can be represented by the

i.e., CP = kc. The stochastic and the deterministic disturbances of

Fig. 4.2 are given as
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The

stiffness,
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{ Z =d +d¢t+ Ir si 2niQt +
1 o 1 g Sin (2mige + ¢)

t 1

respectively, where Et is an uncorrelated random process with zero

. 2
mean and variance o..

£

The GAC system is, thus, governed by the following equations

Y =W +2Z +Y(t) -X +u (A.1)
t t t S t -
- -2
ko Bot B2+ B2
B — ( -
X% % I Y Tty (4.2)
m 1l + alz + azz

By substituting (A.2) into (A.l1) and using the following two

definitions
y =Y -Y (t)
t t ]
§ =Y (t) - py (t-p)
t s s
we can have the following equation

* * -] * -2

B. + B,z + B.z

0 1 2

= g = Wep ¥ 8 T U

y, =W _+2 -~ -
t t t 1 + alz 1 + azz

or
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(b " +b -z 4z’
0 P2 T bz e - Wep T 6,
. .=l
+ (bO + bl z o+ b2 )(wt + t) (A.3)
where
%*
Bi = Bikc/km, i=20,1,2
* *
a, " = (ai + Bi)/(l + BO), i=1,2

o
\
(]

*
Qi/(l +80), i=20,1,2 and a, = 1

0

For the deterministic disturbance Zt we can find such a polynomial

1 -1 -1
P(z )= (1 -z )I(1-2cos2m@)z  +z ), 30
i

so that

-1
P(z )Zt =0

-1
Thus, multiplying (A.3) by P(z ") gives the following model

acz )¢ + 8 )= Bz )( 5 -1
Z -— = -
Ve uyt-p t z Ye-k uyt-—p * t) * ez )gt
where
-1 I - - \
A(z ) = A°( (z ) =1 + a;z + oot a2z .
n )
4
-1 1 -1 _ a
B(z ) =18(z )P(z )=b +bz + ..o bz "
0 1 n 1
o
]
=]

L A
e
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- - -1 -
3 ez =T RG Ty = 1+ g

-.-l ~-n
z + eeet cnz

t
.
.
AL

.

g and n 1s an appropriate positive integer which represents the model

v
-3

.

»
.
0
TG

o order. The polynomials of A, B and C may have common zeros on the

i unit circle because of the periodic disturbances. é&
- =2
\:: The model is linear only 1if overlap factor u 1is known :ﬁ
) ]
XS analytically or experimentally. A special case is the plunge cutting ;]

process which has u = 1. > |
-» .::1
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h

f_ Appendix 2

= STC With Weighted Minimum Variance Criterion
;:ﬁ The control criterion of weighted minimum variance
7 2 2

e E + B~ t], - 290

3 Min [yt+k 8 utl ] B

. gives the following control law for (4.1)

 §§

SR + Bu =0, g = 87/

. yt+k| t t o

The self-tuning algorithm is thus [39],

.ﬂ; (i) choose appropriate B

;j} (ii) estimate the model parameters

o

A

- 8 =9 + K €

t t-1 tt

- P, .,z

o K = -1t . a2 - forgetting factor (<])

t 2 T
A+ 2z P

e t~1%¢
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- T
ﬂ(y Gt-l)’n(yt-p-z - ét_z)’-oo] Py n

]
—

t-p-1 + 8

A~ A T
[fo,fl,...,go,gl’-..,cl,cz,...]

@)

™
[]

Ta
+ - 5]
(v, +Bu )= 2%

(iii) ut can be obtained from

T ~

2% = 0

Notice that when B = 0, the above algorithm becomes minimum variance
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Appendix 3

The FORTRAN Program for Digital Simuiation

In this Appendix we give the FORTRAN program which is used for

the digital simulation in Chapters 5 and 6. The program is written

for the proposed GAC system with multiprobe measurement, (4.33-35).

By modifying the program so that the probe function

Pd(z-l) = ]

and the detuning factor
p=1

the program can also be run for the GAC system without multiprobe
measurement, (4.11) and (4.12).

Subroutine SIML is the simulated plunge cutting process as
described in Chapter 5. The adaption mechanism 1is programmed
according to the minimum variance criterion as shown in Appendix 2.
Subroutine SQRTES 1is a recursive least squares routine with square
root factorization [41]. Three types of the varying forgetting
factors are programmed in subroutine VFORG. The third type, which is
proposed by Fortescue et al. [36], needs
Fl = ZO (constant chosen for appropriate adaption speed)

T
F2 = | + z, P2,

F3 = ¢
t

P
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PROGRAM PLGMLP(INPUT,OUTPUT,PLOT,TAPES=INPUT,TAPE6=OUTPUT)

e Jo 2k v 3k Je e ok e kK e A ok ok ke ok ok e ok o e v ok e e e e ek ok e ok ok o ke o ok e e e ok Tk ok ok Sk ok ok ok ok ok ok ko ok T ok ok de ok ok kk

ADAPTIVE ROUNDNESS CONTROL

THIS IS A TECHNIQUE OF ADAPTIVE CONTROL WITH MULTIPROBE
MEASUREMENT. IT HAS TWO MAJOR PARTS:
1. RECURSIVE PARAM EST
2. IMPLICIT MIN VAR CONTROL
REF: ASTROM & WITTENMARK (1973)

CLARKE (1981)

WHITEHOUSE(1976)

PH.D. THESIS BY YHU~TIN LIN, AUG., 1985, PURDUE UNIV.
GEN LIB: IMSL

e e I v v e ok ek v ok ok ok ok ok ok e o ok vk T e e o e vk T ok ok ok ok ok e ok ke ok ke e vk ok ke e e ke ok ok ok ok ok ok ke e e ok e ok ek ke ok ek

COMMON RNS,FREQ, PHASE,AMPL, ALPH, BETA ,GAMA,JF ,JG

COMMON Y(1000),U(1000),E(1000),X(20),YS(1000),FEED, F(1000)
DIMENSION A(10),B(10),C(10),YP(1000)

DIMENSION Z(20),THETA(20),THETB(20),S(120),2Y(20),2U(20),2ZD(20)

READ 200,IP,IPRINT,IFEED,K,N,NA,NEEDPLT,NT

K1=K+1
LaN+K+1
LK=L+K
LK1=sL+K+1
LN1=L+N+1
N1=N+1]
NC=NA+1
NK=N+K
NPAR=N+L+N
NTO=NT-1
NTK=NT+K
NTP=NT-1P*2

C **%*x* SETUP OF MULTIPROBE CONFIG.

READ 200,JF,JG

DPI=2.%*3.1415926
ALPH=SIN(DPI*(JG-JF)/IP)/SIN(DPI*JG/IP)
BETA=-1.0

GAMA=S IN(DPI*JF/IP)/SIN(DPI*JG/IP)

- C %**x%% SETUP OF SIMULATION CONDITIONS

READ 210, AMPL,FEED,PHASE,PSQR,RNS,STIFF
FREQm=2.%*(2.%3,141592654/1P)

READ 220, (A(J),J=1,NA),(B(J),J=1,NA),(C(J),J=1,NC)
PRINT 230, RNS,FREQ, AMPL,JF,JG,ALPH, BETA,GAMA
PRINT 240,NT,N,K,IP,NPAR,IFEED, FEED,STIFF,PSQR

P )
L}

X
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N C ***** SELECT FORGETTING FACTOR AND DETUNING FACTOR
o C
B C JFORG=1 F1-F2/1
C 2 F1*FORGET+F2
o c 3 FORTESCUE(1981)
e READ 250,JFORG, Fl,F2,F3,DTUNE
X PRINT 270,JFORG, Fl,F2,F3,DTUNE
C
C *%*x* INITIALIZATION OF PLOT
o
5 C NEEDPLT=0  NO PLOT
"l C 1  TWO POLAR PLOTS
. C 2 ALL PLOTS
o c 3  CONTROLLED POLAR & TIME SERIES (UNSTABLE SYSTEM)
c 4  ONLY TIME SERIES
o
IF (NEEDPLT.EQ.0) GO TO 30
b CALL PLOTS
L CALL FACTOR(.4)
oy SFPOLA=40.
g XC=0,
d YC=12.5
= YXL=4.
AN CALL PLOT(12.5,0.,3)
. CALL PLOT(12.5,16.,3)
IF (NEEDPLT.EQ.1) GO TO 30
o
SFPARA=1.
« SFTIME=1S5.
o XINI=0.
o XLEN=10.
- YINI=4,2
e YLEN=2.
1 THERO=2.
. THMIN=-THERO/ SFPARA
CALL LABEL(NT,XINI,XLEN,YINI,YLEN,THMIN)
- DT=XLEN/NT
=5 T=XINI
TO=XINI
=) UZERO=YINI+]1.
\ YZERO=Y INI+3.
e YZERU=Y INI+S.
- DO 20 J=1,NPAR
K 20 THETB(J)=0.
e c
Lt C **%%* TEST UNCONTROLLED SYSTEM
o~ C IFEED = 0, NO RETRACTION; =1, WITH RETRACTION
W c
o 30 CONTINUE ‘
s DO 40 J=1,NA 8
y B(J)=B(J)*STIFF 9
% 40 X(J)=0. -
: ,’- YSO'O. n
e N
L =
AN -
e e e e e A L T D A T e B
.-.P$:. ‘. < : B ‘i: Pl .- S :",' . M e e ";.:t}"('\-:.‘i}:‘}'F1. 1\'.‘. .. .,._.,-_: o
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DO 50 I=],NTK
YS(I)=FEED*I
IF (I.GT.NTP) YS(I)=YS(NTP)
IAP=I-1P
IF (IAP.LE.0O) GO TO 50 .-
IF (IFEED.EQ.0) YSO=YS(IAP)
IF (IFEED.EQ.O) YSO=FEED*IAP
SO0 F(I)=YS(I)-YSO .
ICTL=0
CALL SIML(A,B,C,NT,NA,IP,ICTL) i
IL=NT
DO 60 I=],NT
F(IL)=PROBE(F,IL)
Il=IL-1
60 YP(I)=Y(I)-YS(I)
NTR=NT-1P
IF (NEEDPLT.NE.l.AND.NEEDPLT.NE.2) GO TO 65
NTR=NT-IP
XC=XC+2.5
1FCON=0
CALL RONDPLT(YP,XC,YC,YXL,NTR,IP,RNS,IFCON,SFPOLA) iy
65 IF (NEEDPLT.LE.l) GO TO 70 =
CALL SPLOT(YP,NT,YZERU,TO,DT,SFTIME) ™
CALL PLOT(XINI,THERO,3)

S
N R

.-

C
C **%*%* TNITIALIZATION FOR PARAM EST
70 PRINT 280
ICTL=1 2

) READ 220, (THETA(J) ,J=1,NPAR)

N THETA(N1)=1. -
o DO 80 J=1,NA he
- 80 X(J)=0.

a DO 90 I=2,LKl
. 90 CALL SIML(A,B,C,I,NA,IP,ICTL) 5
i CALL INIT(YP,Z2Y,2U,ZD,S,N,K,IP,PSQR) 73
-b' C ~'
N C **%** RECURSIVE EST BY SQUARE ROOT METHOD W. FORGET FACTOR -
3 C o
", ZDK=ZU(1)-PROBE(U, LK) °

DO 110 I=LKl,NTO e
o, CALL VFNRG( FORGET,JFORG,I,Fl,F2,F3) <
z‘_ IY= I-K {',
55 YP(I)=Y(LY)-YS(IY) {

CALL MOVE(ZY,K!,Z,1,N) R
CALL MOVE(ZU,Kl,Z,N1,L) ,
CALL MOVE(ZD,K1,Z,LNI,N) -4
. Z2Z=ZDK 1
" IF (K.NE.O) 2Z=-ZD(K) N
j, PHI=PROBE(YP,I)+ZZ N
e CALL SQRTES(PHI,Z,S,THETA,NPAR,ERR,FORGET) .
T C ***x%x DATA UPDATE & CONTROL o

CALL UPDAT(ZY,PHI,NK) =
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iy CALL UPDAT(ZU,O0. ,LK)
X CALL UPDAT(ZD,-ZDK,NK)
- SUM=SCAPRD(ZY,THETA,l,1,N)+SCAPRD(ZU,THETA,1,N1,L)+
& SCAPRD(ZD,THETA,l,LNl,N)
. I1=I+1
o IK1=I1+K
. IKP=IK1-IP
g ZDK=F(IK1)
N IF (LKP.GT.0) ZDK=ZDK-PROBE(YP,IKP)
ZU(1)=(ZDK-SUM) /THETA(N1)
o UCI)=(ZU(1)-ZDK-PROBE(U,I))/ALPH*DTUNE
[~ ZU(1)=PROBE(U, I)+ZDK

T IY0=I1Y-1
;1 IF (I.GT.IPRINT) PRINT 260,YP(I),U(IY0),ERR,(THETA(J),J=1,NPAR)
IF (NEEDPLT.LE.l)} GO TO 100
-, CALL CPLOT(THETA,THETB,NPAR,T,DT,THERO, SFPARA)
o C *%*x** COMPUTE SYSTEM OUTPUT
100 CALL SIML(A,B,C,I1,NA,IP,ICTL) "]
h 110 CONTINUE ]
oy C
C **%x%%* PLOT CONTROL INPUT & OUTPUT
- C
oy DO 120 I=NT,NTK
o IY=I-K o
< I1Y0=IY-1 ’
- YP(I)=Y(IY)-YS(IY)
120 PRINT 260,YP(I),U(IYO)

- IF (NEEDPLT.EQ.0.OR.NEEDPLT.EQ.4) GO TO 130

NTKP=NTK~IP

XC=XC+5.

IFCON=1

CALL RONDPLT(YP,XC,YC,YXL,NTKP,IP,RNS,IFCON,SFPOLA)

130 IF (NEEDPLT.LE.l) GO TO 150

Y

[
i .
-7 At s S

DO 140 I=1,NT
IK=I+K
140 YP(I)=YP(IK)
CALL SPLOT(YP,NT,YZERO,TO,DT,SFTIME)
CALL SPLOT(U,NT,UZERO,TO,DT,SFTIME)
150 CONTINUE
CALL PLOT(0.,0.,999)
o STOP
o 200 FORMAT(101I5)
- 210 FORMAT(8F10.0)

- 220 FORMAT(5F10.0)

- 230 FORMAT(1X, “RNS=",F5.4,” FREQ=",F10.8,” AMPL=",F5.4," JF=",
;—»i & 12,7 JG=",12,” ALPH=",F10.6,” BETA=" ,F10.6,” GAMA=",F10.6)
- 240 FORMAT(1X, “NT=",14,” N=~,I2,” K=", 612,” IP=",12,” NPAR ~,I2,
e & °~ IFEED=",12,” FEED=",F5.4,” STIFF=",F5.2,° PSQR=",F5.1)
A 250 FORMAT(15,4F10.0)

e 260 FORMAT(1X, 16F8.5)

- 270 FORMAT(1X, “TYPE OF FORGET:”,I2,” Fl=",F8.5,” F2=",F8.5,” F3=",
oY
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& F8.5,” DETUNE=",F8.5)
280 FORMAT(iX,80("-")/7X, Y=",6X, U=",4X, "ERR=",2X, “THETA=")
END

SUBROUTINE INIT(YP,ZY,Z2U,ZD,S,N,K,IP,PSQR)
C % e T e vk de e e & Je 7 ok sk ok e e e J o vk Je T de K T vk e T e e ok ok sk e b Fe o ok ok e sk Kk ok ok o ok ke sk ok ok sk & A ok ok ok o ok ok ok ek

c INITIALIZATION OF VARIABLES
C Fdedededededededededosh sk e dededededededhkd s ook de e dedededede sk st dodk de ek ke ok ek o ok ek ok ek
c

COMMON RNS,FREQ, PHASE,AMPL, ALPH, BETA,GAMA,JF ,JG
COMMON Y(1000) ,U(1000),E(1000),X(20),YS(1000),FEED, F(1000)
DIMENSION YP(1000),2ZK(20),ZY(20),2U(20),2D(20),S(120)
L=N+K+1
NK=N+K
Kl=K+1
LK=L+K
DO 2210 I=1,LK
YP(I)=0.

IK=I-K
2210 IF (IK.GT.0) YP(I)=Y(IK)-FEED*IK

LKK1=LK+K+1

DO 2220 J=1,LK

LKP=LKK1-IP

ZK(J)=F(LKK1)

IF (LKP.GT.0) 2ZK(J)=ZK(J)-PROBE(YP,LKP)
2220 LKKI=LKKl~1

C
C *** INIT z(.) & X(.)
o
JY=LK
DO 2230 J=1,NK
JU=K 1+J

ZY(J)=PROBE(YP,JY)+ZK(JU)
2230 JY=JY-1

DO 2240 J=1,LK
ZU(J)=PROBE(U,JU)+ZK(J)
2240 JU=JU-1

C
DO 2245 J=1,NK
J1=J+1
2245 2D(J)==-2K(J1)
o
C **%* INIT S(.)TRANSPOSE- UPPER TRIANGLE, IN ROW-~WISE
C
NPAR=N+L+N
JI=1

DO 2250 J=1,NPAR

DO 2250 I=J,NPAR

S(JI)= ).

IF (I.EQ.J) S(JI)=PSQR
2250 JI=J I+]

RETURN
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END

SUBROUTINE SIML(A,B,C,IT,N,IP,ICTL)
C % e e Je o de de e ok e ok Jo ok vk e ok e ok e A e ke ok ek e e ok vk ok gk e gk e ok e A ok ok ok Tk ke b ok K ok vk ok T A ok sk ok ok ok ok sk ok ok Kk ok ek
C SIMULATED PLUNGE CUTTING PROCESS
c ICTL=0  (UNCONTROL)
c ICTL=1 (CONTROL)
C
c

-

Y e e e e e e b o e ok ok A K vk e 7 e A g vk e e K ok ek ok K A ek ok de ok ke ke Kk e ek ok ek ke ke e e e ok e e e e e ke

COMMON RNS,FREQ, PHASE,AMPL,ALPH, BETA,GAMA,JF,JG
COMMON Y(1000),U(1000),E(1000),X(20),YS(1000),FEED
DIMENSION A(20),B(20),C(20)
I1=IT
I12=IT
N1=N+1
IF (ICTL.NE.O) GO TO 2120
I1=2
SEED=12347.D0
CALL GGNML(SEED,IT,E)
RU=.001
SEED=127.D0
CALL GGNML(SEED,IT,U)
DO 2110 I=1,IT
U(I)=U(T)*RU
IF (I.GT.N1) U(I)=0.
2110 E(I)=E(IL)*RNS
Y(1)=E(1)+YS(1)+AMPL*S IN( FREQ+PHASE)

c
2120 CONTINUE
- DO 2150 I=I1,I2
- E1=E(1)
INl=I-N]
IF (IN1.GT.0) El=E1+C(N1)*E(INI)
X(N1)=0.
DO 2140 J=1,N
IJmI~J
IF (1J.LE.0) GO TO 2130
EI=E1+C(J)*E(LJ)
Y1=Y(LJ)
IJP=IJ~1P
I[F (IJP.GT.0) Yl=YI-Y(IJP)
X(N1)=X(N1)+B(J)*Y1

2130 JN=N1=J
X(N1)=X(N1)=A(IN)*X(J)
Jl=J+]

2140 X(J)=X(J1)
Y(L)=E1-X(N1)+YS(I)+AMPL*SIN(FREQ*I+PHASE)
I10=I-]

Y(T)=Y(I)+U(IO)

[BP=I-1P

I[F (IBP.LE.O) GO TO 2150
YB=Y(I)-Y(IBP)

IF (YB.LT.0.) YB=0.
Y(I)=YB+Y(IBP)
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A
L.
L 2150 CONTINUE
N RETURN
v END
b SUBROUTINE VFORG(FORGET,JFORG,I,Fl,F2,F3)
A C ********************************************************t**********
o c COMPUTE TIME VARYING FORGET
:.\“ C Je de e Je Je ok e &k o o % vk ok T e ok o F sk e e e sk e e ok Ak A e Ik vk vk ok e e 3k sk e ok sk ok ok A ke ok ok Ak ok vk e ok ok ok ok g ok e e o ok ok ok e ok ke ke
n c
28 IF (JFORG.EQ.1) FORGET=Fl1~F2/1
oo IF (JFORG.EQ.2) FORGET=F1*FORGET+F2
) IF (JFORG.NE.3) RETURN
b Lo FORGET=1.~F3*F3/(F1*F2)
el RETURN
o END
ol SUBROUTINE SQRTES(PHI,Z,S,THETA,N,E,FORGET)
.t C % e Je ke J A J s ok o e gk e g s gk de F g ok ok ke ok ke Tk ok ok ok ke e A A ek vk ok e o ok 3k ke kA ok ok ok v I ok ok ok ok e e ek ke
X C RECURSIVE PARAM ESTIMATION OF SISO SYSTEM
- c BY SQUARE ROOT METHOD
- C REF: CLARKE (1981)
c
.:4". C Je % Je Je 3 ok s % o e v o sk ok e e 2 o 3k sk ke Ak 7k gk ok Ik ok v % v o ok ok 3k e e ok e ok ke e T vk ok v ok sk ke ok Sk Ik ok dk e ok ok ok ok ke ek
% c
] DIMENSION S(120),2(20),6K(20),G6(20),THETA(20)
k|
A C
e C *** CAL PRED ERROR
el c
E=PHI-SCAPRD(Z,THETA,l,1,N)
."_' C
C *** CAL SCALAR DIVISOR-SIGSQ AND KALMAN GAIN
ran c
w SIGSQ=FORGET*FORGET
M K=N
-
. JI=1
DO 3090 J=1,N
u, 3090 GK(J)=0.0
c
h DO 3100 J=1,N
NG FJ=SCAPRIS,Z,JI,J,K)
) K=K~1
188 SIGSQ=S IGSQ+FJ*FJ
i DO 3100 I=J,N
GK(I)=GK(I)+FJ*S(JI)
-7 3100 JI=JI+1
b c
= c
~ SIG=SQRT(SIGSQ)
> DO 3110 I=1,N
. 3110 G(I)=GK(I1)/SIG
! ::-; c
. C *** RECURSIVE ALGORITHM ON S(.)
N c
W K=1
I DO 3130 J=1,N
"
.::_‘:
o
%
e
i
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A=SQRT(S(K)*S(K)-G(J)*G(J))

U=S(K)/A

V=-G(J) /A

S(K)=A/FORGET

IF(J.EQ.N)GO TO 3130

Kl=K+1

Jl=J+1

DO 3120 I=JI,N

. B=S(K1)
S(K1)=(U*S(K1)+V*G(I))/FORGET

. G(I1)=U*G(I)+V*B

X 3120 Kl=K1+1

X K=K1

N 3130 CONTINUE
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C *** CAL NEW PARAMETERS

A=E/SIGSQ
DO 3140 I=1,N
3140 THETACI)=THETA(I)+GK(I)*A
> RETURN
END
FUNCTION SCAPRD(Al,A2,I1,1I2,L)
C * % Je Je dede e de e ek s K T ok de e ok e ok e T g v ok e e Kk F ok sk T ok e e ok ke ok e ke ke ke ok ok Kk A ok ke e R ok ek ok k ek
o CAL. SCALAR PRODUCT OF TWO COLUMN MATRICES
C % % e e de e de Jo e e o v Fe e e de e v ek ek A ok ok e ke e sk gk ke e e e T e ok v ok ke A kA s ek ok e ok gk ok ke sk e Kk ok ok Kk kAR
o
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DIMENSION A1(100),A2(100)

SCAPRD=0.0

J1=I1

J2=12

g DO 2410 I=1,L

5 SCAPRD=SCAPRD+A1(J 1) *A2(J2)
J1=J1+1

2410 J2=J2+1

N RETURN

2 END
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SUBROUTINE MOVE(A,IA,B,IB,LEN)

3 C % o S F T o e Je ok vl vl e s o e ek ok de sk vk e e e e 2k ok vk ok e ok e e o o e ok ok e o o ok A A 3k ok ok ok ok sk ke
Cc MOVE A TO B

C e 7o e e ok de e e e ok e e ok vk ok ok ok ok e o ke e e ok ok o %k ok ok ok v 7 ok ok ok e sk ok e ok ok e e e e ok ok ok A o ke K Kk kok
-5 ¢

¢ DIMENSION A(50),B(50)

§} JA=IA

3 JB=1B

r DO 2510 I=1,LEN

- B(JB)=A(JA)
JA=JA+]
" 2510 JB=JB+l
- RETURN

= END

b SUBROUTINE UPDAT(Z,Y,NPAR)

C dededededdededede sk ek s ok o e vk b e o e e ok ok ok v sk e ok o ok o vk Sk ok vk vk o 2k 7k ok ok o ok ok o vk ke ok ok ok ok s Ak o ok vl ok ok b Ak ek
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N o SHIFT I/0 DATA (FIFO)
fﬁ{q G Yededediede v vl ok de ok e ok e sk o ok e vk e e o e ok ok ok e ok e e ok ke ke vk ok e ok ok e ok e ok ke e e e ok ok e ek ek ok ke ek
~ c
. DIMENSION Z(20)
J=NPAR
[ DO 2310 I=2,NPAR
}H J1l=J-1
o 2(3)=2(J1) )
Y 2310 J=J1 3
z(1)=y =
- RETURN !
“in END g
f:;: FUNCTION PROBE(Y,I) ‘
A C e dedededededede sk T e s de ook b ok e v e sk s o ol ok Kk e v e s e e ok e ok vl e ok Sk ok ok ok ok ok ke e sk gl ok ok sk o o ok o Sk ok ok o ek
e C FILTERED OUTPUT OF THREE PROBES
C  Fededededdededede e sk de Je e o sk e e de e s e e ok ek e ok v ke o ok e vk vk e ok ok ok ok ok e ok ok ok vk v e ok ok ok ok Sk e sk sk ok ok dk ek
g C
o COMMON RNS,FREQ, PHASE,AMPL, A,B,C,JF,JG
- DIMENSION Y(1000)
LJF=I-JF
T 1JG=I~JG
PROBE=Y(1)*A
ool IF (IJF.GT.0) PROBE=PROBE+Y(IJF)*B
?r{ IF (I1JG.GT.0) PROBE~PROBE+Y(IJG)*C
o RETURN
hrs END
- SUBROUTINE ACCUR(Y,I,N,DIMERR,OUTRND, FINISH)
! C I o ok o de Jo e 7o Ao K e e de K e vk ok e e e sk ke e Ao e e Je o 3k 3k ok vk e e e o e e ok e Kk ok J e e e o ok o ok ok J e ok ok ke A Ak kk
o EVAL. ACCURACY OF MACHINED PART
{i' C *Ahkdkhkhkkhihhkhkhhhhhhhhhhkhhkhhkihhkhhhhhhhkhhhhhhkkkhhkhhkhhhhhhkhhhhhkhhihk
i“.:l. C
:2::;2 DIMENSION Y(1000)
SUM=0.
SUMSQ=0.
At YMAX=0.
) ::-“ YMIN’O.
T Kl=I+1
K2=I+N
e DO 2520 K=K1,K2
K, - IF (Y(K).GT.YMAX) YMAX=Y(K)
IF (Y(K).LT.YMIN) YMIN=Y(K)
b SUM=SUM+Y(K)
i 2520 SUMSQ=SUMSQ+Y(K)*Y(K)
T D IMERR=SUM/N
. FINISH=SQRT(SUMSQ/N-D IMERR*D IMERR)
" OUTRND=YMAX-YMIN
PRINT *, OUTRND” ,OUTRND,” FINISH” ,FINISH,” DIMERR” ,DIMERR
s RETURN
END
e SUBROUTINE CPLOT(THETA,THETB,NPAR,T,DT,OFFSET, SF,
{ff C hehAdddRskded ik ok ok sk d ok sk s o ok vk o s o ok e vk o ok o ok o o e ok e ke sk e ok ok o ok ok ok ok sk ok e ok ek
- c PLOT OF PARAMETERS
. C e desdededde ek ook i ok sk ok o s sk v vk 2k ok sk 7 o ke ok o ok sk e ok ok ok ok 7 ok e 2k ok ok e ok ok ke ok ok o o v 2k o ok e vk e ok ke A ke
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DIMENSION THETA(20),THETB(20)

T1=T

T=T+DT

THETB(1)=THETA(1)

DO 4110 J=1,NPAR

CALL PLOT(T,OFFSET+THETA(J)*SF,2)

J1=J+1

IF(J1.LE.NPAR) GO TO 4100

Jl=1

T1=T
4100 CALL PLOT(TL,OFFSET+THETB(J1)*SF,3)
4110 THETB(J1)=THETA(J1)

RETURN

END

SUBROUTINE SPLOT(Y,NT,ZER0,TO,DT,SF)
C % v 3% 7 Je 7 de 7 ok o ok Sk e e 3k %k e e K ok vk % T Ik ek sk e e Tk ok e ok gk S ok ke Ak ok ok sk A vk ok ok Y ok ok %k ok ok vk ok ok bk ok Rk
C PLOT OF SINGLE TIME SERIES
C s % e s Je Je g e d K K K T Kk e ke e R sk e T s o o T ok ke ok % %k ok gk vk vk gk ok e vk ok ok ok ok e ok & ok ok 7k ok e ok %k ok ok % ok ok ek
c

DIMENSION Y(2000)

CALL PLOT(TO,ZERO,3)

T=TO

DO 4115 I=],NT

T=T+DT

Y(I)=Y(I)*SF

IF(ABS(Y(I)).GT.1.0)Y(I)=SIGN(l.,Y(I))
4115 CALL PLOT(T,Y(I)+ZERO,2)

RETURN

END

SUBROUTINE RONDPLT(Y,XC,YC,YXL,I,N,RNS,IFCON,SF)
C *************************************************************

c POLAR PLOT OF FORM GEOM. AND EVAL. OUT-OF-ROUNDNESS
C dkdededededodedesodod ok ok e d s dedede ok dee ok e ek o ok ok ok ok ke ke e e e ok ek ok o e o e o ek ok ok ke ek

c
DIMENSION Y{1000)
CALL AX1SX(XC,YC-YXL/2,” ~,1,YXL,90.,0.,.1,.1,31)
CALLSAXISX(XC-YXL/Z,YC,' “,1,YXL,0.0,0.,.1,.1,31)
R=1.
DANG=2.%*3.1415926/N
CALL PLOT(XC,YC,-3)
CALL CIRCLE(R,DANG,N)
CALL NEWPEN(2)

A=Y (L)*SF+R

CALL PLOT(A,0.,3)
I1=1+1

12=I+N-1

DO 3500 K=I1,I2
R1=R+Y(K) *SF
ANG=DANG* (K~-1)
X1=R1*COS(ANG)
Y1=R]1*SIN(ANG)
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3500 CALL PLOT(X1,Y1,2)
CALL PLOT(A,0.,2)
CALL NEWPEN(1)
CALL ACCUR(Y,I,N,DIMERR,OUTRND, FINISH)
HIGH=.2
XS=-2.
XN=.5
YSN=3.0
IF (IFCON.EQ.0) CALL SYMBOL(XS,YSN,HIGH,”  (UNCONTROLLED)“,0.,17)
IF (IFCON.EQ.1) CALL SYMBOL(XS,YSN,HIGH,”  (CONTROLLED)",0.,17)
YSN=YSN-HIGH*].5
CALL SYMBOL(XS,YSN,HIGH, DIMENS ERROR:”,0.,12)
CALL NUMBER(XN,YSN,HIGH,DIMERR,0.,5)
YSN=YSN-HIGH*1.5
CALL SYMBOL(XS,YSN,HIGH, QUT-OF~-ROUND:”,0.,12)
CALL NUMBER(XN,YSN,HIGH,OUTRND,0.,5)
IF (RNS.EQ.0) GO TO 3550
YSN=YSN-HIGH*].5
CALL SYMBOL(XS,YSN,HIGH, FINISH (RMS):”,0.,12)
CALL NUMBER(XN,YSN,HIGH,FINISH,0.,5)

3550 CALL PLOT(0.,0.,3)
CALL PLOT(-XC,-YC,-3)
RETURN
END
SUBROUTINE CIRCLE(R,DANG,N)
CALL PLOT(R,0.,3)
DO 3600 I=1,N
ANG=DANG* I
X=R*COS(ANG)
Y=R*SIN( ANG)

3600 CALL PLOT(X,Y,2)
RETURN
END
SUBROUTINE LABEL(NT,XIO,XLO,YIO,YLO,THMIN)

C e Je e Je Jo A e e e e e e e e ok ok ok d A T K ok sk e T e K ok sk v I e o gk g vk o e e sk vk dk e e ok ok ke ok Tk b e ok sk ok ok ok ok ok ok skeok

c PLOT OF LABELING AND COORDINATE FRAME
[od 7 % % ¢ e 3k e ok S v %k e ok sk %k sk Tk %k ok Kk v sk ok ke kv sk ok Je sk sk ok sk vk v o ok ok 3k 2k %k b ok ok ok sk ok ok ok % ok ok e ok ok ok ok ok ok ek
C
DX=NT/XLO
XI=XI0
XL=XLO
YI=YIO
YL=YLO
Y=Y I
CALL AXIs(xI,vI,” -,-1,XL,0.,0.,DX,20)
DO 4220 J=1,3
CALL AXIs(XL,Y,” -,1,YL,90.,0.,1.,16)
CALL AXIS(xI,Y,” °,-1,YL,90.,0.,l.,16)
DO 4220 K=1,2
Y=Y+].
CALL PLOT(XI,Y,3)
CALL PLOT(XL,Y,2)
4220 CONTINUE
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YI=0.
Yl=4.
DY=-THMIN*2./YL

CALL PLOT(XI,YL,3)

CALL PLOT(XL,YL,2)

CALL AXIs(xI,YI,” °,~1,XL,0.,0.,DX,4)

CALL AXIS(xL,YI,” -,1,YL,90.,0.,1.,16)

CALL AXIS(XI,YI,“THETA",5,YL,90.,THMIN,DY,7)
XS=.50

YS=Y~-.4

AN==-.3

YN=Y-1.

HIGH=.2

CALL SYMBOL(XS,YS,HIGH, UNCONTROL RESPONSE",0.,18)
CALL NUMBER(XN,YN,HIGH,0.,0.,0)

YS’YS‘Z.

YN=YN-2,

CALL SYMBOL(XS,YS,HIGH, CONTROL RESPONSE”,0.,16)
CALL NUMBER(XN,YN,HIGH,0.,0.,0)

YS=YS-3.

YN=YN-2,

CALL SYMBOL(XS,YS,HIGH, CONTROL INPUT ,0.,13)
CALL NUMBER(XN,YN,HIGH,0.,0.,0)

RETURN

END
#EOR

60 880 0 0 2 2 0 900
5 20

.004 004 0 50. .002 .1
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APPENDIX 4
Project Staft in 1983 — 1984

Faculty

M. M. Barash, Ransburg Professor of
Manufacturing and Professor of Industrial
Engineering.........ccooieiiiiieiiiiiiiennn. Principal Investigator &
Project Director

C. R. Liu, Professor of Industrial
Engineering.................. Principal Investigator

K. S. Fu, Goss Distinguished Professor
of Engineering (Elec.Eng.)...................... Faculty Associate

J. Modrey, Professor of Mechanical
Engineering..................l. Co—Principal Investigator

A. L. Sweet, Professor of (ndustrial
Engineering...........ooooiiiiii i Co—Principal Investigator

W. Stevenson, Professor of Mechanical
Engineering............................... Faculty Associate

J. J. Talavage. Professor of Industrial
Engineering................. Faculty Associate

R. Hannam®, Visiting Associate Professor
of Industrial Engineering........................ f-aculty Associate

W. Johnson=», Visiting Professor of Industrial
Engineering.................. Faculty Associate

A. Shumsherrudint, Visiting Associate Professor
of Industrial Engineering........................ Faculty Associate

( *University of Manchester Institute of Science and Technology, England
»*University of Cambridge. England
tCranfield Institute of Technology. England)
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